If m+1/m=underoot3, find m^3-1/m^3
Answers
Answered by
2
Answer:
Step-by-step explanation:
Given that:
m+1/m=√3 ------(1)
squaring on both sides, then
(m+1/m)²=(√3)²
[(a+b)²=a²+2ab+b²]
=>m²+2(m)(1/m)+1/m²=3
=>m²+1/m²+2=3
=>m²+1/m²=3-2
=>m²+1/m²=1 ------(2)
We know that
(a-b)²=(a+b)²-4ab
(m-1/m)²=(m+1/m)²-4(m)(1/m)
=>(m-1/m)²=(√3)²-4
=>(m-1/m)²=3-4
=>(m-1/m)²=-1
=>m-1/m=√-1 =√i²=i-----(3)
now m³-1/m³=(m-1/m)(m²+1/m²+(m)(1/m))
[(a³-b³)=(a-b)(a²+ab+b²)]
=>m³-1/m³=(m-1/m)(m²+1/m²+1)
=>m³-1/m³=(i)(1+1)
=>m³-1/m³=2i
Used formulae:-
- (a+b)²=a²+2ab+b²
- (a-b)²=(a+b)²-4ab
- a³-b³=(a-b)(a²+ab+b²)
- -1=i²
Similar questions
Hindi,
2 months ago
English,
2 months ago
Business Studies,
2 months ago
Math,
5 months ago
Social Sciences,
5 months ago
Math,
10 months ago
English,
10 months ago