Math, asked by Prettyprincess96, 1 day ago

if (m+1)th term of an A.P. is twice the (n+1)th term, then prove that (3m+1)th term is twice the (m+n+1)th term.​

Answers

Answered by talpadadilip417
5

Step-by-step explanation:

 \begin{aligned} \rm t_{n} & \rm=a+(n-1) d \\  \\ \rm \text { Given } t_{m+1} & \rm=2 t_{n+1} \\  \\ \rm a+(m+1-1) d &  \rm=2[a+(n+1-1) d] \\ \\   \rm a+m d & \rm=2(a+n d) \Rightarrow a+m d=2 a+2 n d \\ \\  \rm m d-2 n d & \rm=a \\ \\  \rm d(m-2 n) & \rm=a \quad \ldots .(1) \\ \\  \rm \text { To prove } t_{(3 m+1)} & \rm=2\left(t_{m+n+1}\right) \\ \\  \rm \text { L.H.S. } & \rm=t_{3 m+1} \\  \\ & \rm=a+(3 m+1-1) d \\  \\ & \rm=a+3 m d \\  \\ & \rm=d(m-2 n)+3 m d \quad \text { (from 1) } \\  \\ & \rm=m d-2 n d+3 m d \\ \\  & \rm=4 m d-2 n d \\  \\ & \rm=2 d(2 m-n) \end{aligned}

\[ \begin{aligned} \text { R.H.S. } & \rm=2\left(t_{m+n+1}\right) \\ \\  & \rm=2[a+(m+n+1-1) d] \\  \\ & \rm=2[a+(m+n) d] \\  \\ & \rm=2[d(m-2 n)+m d+n d)] \text { (from 1) } \\  \\ & \rm=2[d m-2 n d+m d+n d] \\  \\ & \rm=2[2 m d-n d] \\ \\ & \rm=2 d(2 m-n) \\  \\ \text { R.H.S } & =\text { L.H.S } \\  \\ \rm \therefore t_{(3 m+1)} & \rm=2 t_{(m+n+1)} \end{aligned} \]

Hence it is proved.

Similar questions