Math, asked by hayawali45, 3 months ago

if m-2/m=5 show m^4+1/m^4=727​

Answers

Answered by CuteAnswerer
3

CORRECT QUESTION :

If \bf{m - \dfrac{1}{m} = 5 }

Show that \bf{ m^4 + \dfrac{1}{ m^4} = 727} .

GIVEN :

  • \bf{m - \dfrac{1}{m} = 5}.

TO FIND :

  • Show that \bf{ m^4 + \dfrac{1}{ m^4} = 727} .

FORMULA REQUIRED :

  • \bigstar \underline{ \boxed{ \red{\bf{{(a -b)}^{2} = a^2 - 2ab + b^2 }}}}

  • \bigstar \underline{ \boxed{ \red{\bf{{(a +b)}^{2} = a^2 +2ab + b^2 }}}}

SOLUTION :

  • Squaring on both sides :

\implies { \sf{{ \bigg(m  -  \dfrac{1}{m} \bigg)}^{2} = (5) ^2 }} \\ \\

\implies { \sf{ {(m)}^{2} -  2 \times \cancel{m} \times \dfrac{1}{ \cancel{m}} + { \bigg( \dfrac{1}{m} \bigg )}^{2} = 25 }} \\ \\

\implies { \sf{ {m}^{2}  -  2 + \dfrac{1}{ m^2 } = 25}} \\ \\

\implies { \sf{ {m}^{2} + \dfrac{1}{ m^2 } = 25 + 2 }} \\ \\

\implies \underline{\boxed{ \bf{ {m}^{2}   + \dfrac{1}{ {m}^{2}  } = 27}}}

  • Squaring on both sides (Again) :

\implies { \sf{{ \bigg(m^2 + \dfrac{1}{m^2} \bigg)}^{2} = (27)^2 }} \\ \\

\implies { \sf{ {(m^2)}^{2} + 2 \times \cancel{m^2} \times \dfrac{1}{ \cancel{m^2}} + { \bigg( \dfrac{1}{m^2} \bigg )}^{2} =729 }}\\  \\

\implies { \sf{ {m}^{4} + 2 + \dfrac{1}{ m^4 } = 729 }} \\ \\

\implies { \sf{ {m}^{4} + \dfrac{1}{  m^4 } = 729 - 2 }} \\ \\

\implies \underline{\boxed{ \pink {\bf{ {m}^{4} + \dfrac{1}{ m^4} = 727}}}}

\huge{\green{\therefore}}\bf{ m^4 + \dfrac{1}{ m^4} =727 }.

Similar questions