Math, asked by madhureddy43, 10 months ago

If m = 2-sqrt(3) and n = 2+sqrt(3), then the value of(m^2 + n^2)/(m^3 + n^3) is:​

Answers

Answered by suchindraraut17
0

\frac{m^2 + n^2}{m^3+n^3} = \frac{7}{8}

Step-by-step explanation:

Given,m = 2 - \sqrt(3)

          n = 2+\sqrt(3)

We have to find the value of \frac{m^2 + n^2}{m^3+n^3}

Here, m^2 =(2 - \sqrt(3))^2 [(a-b)^2 = a^2-b^2 -2ab]

                 = 4 + 3 - 4\sqrt(3)

                 = 7 - 4\sqrt(3)

        n^2 = (2 + \sqrt(3))^2  [(a+b)^2 = a^2+b^2 +2ab]

                = 4 + 3 + 4\sqrt(3)

                = 7 + 4\sqrt(3)

       m^2 + n^2 = 7 - 4\sqrt(3) + 7 + 4\sqrt(3)

                         = 14

        m^3 =(2 - \sqrt(3))^3 [(a-b)^3= a^3 -b^3-3ab(a-b)]

                = 2^3 - (\sqrt(3))^3 - 3.2.\sqrt(3)(2-\sqrt(3))

                =8 - 3\sqrt(3) - 6.\sqrt(3)(2-\sqrt(3))

    n^3 = (2 + \sqrt(3))^3 [(a+b)^3= a^3 +b^3+3ab(a+b)]

             =2^3 + (\sqrt(3))^3 + 3.2.\sqrt(3)(2 + \sqrt(3))

             = 8 + 3\sqrt(3) + 6\sqrt(3)(2 + \sqrt(3))

     m^3+n^3 = 8 - 3\sqrt(3) - 6.\sqrt(3)(2-\sqrt(3)) + 8 + 3\sqrt(3) + 6\sqrt(3)(2 + \sqrt(3))

                      = 8 + 8

                      = 16

\frac{m^2 + n^2}{m^3+n^3} = \frac{14}{16}

                                                              =   \frac{7}{8}

Similar questions