Math, asked by Anonymous, 1 year ago

if m^4+1/m^4=194,find m^3+1/m^3,m^2+1/m^2and m+1/m.

Answers

Answered by Muskan1101
13
Here's your answer..

Solution:-
Given :-
 = &gt; {m}^{4} + \frac{1}{ {m}^{4} } = 194 \\<br /> = &gt; {( {m}^{2} + \frac{1}{ {m}^{2} } ) }^{2} - 2 = 194
 = &gt; {( {m}^{2} + \frac{1}{ {m}^{2} }) }^{2} = 194 + 2 \\<br /> = &gt; {( {m }^{2} + \frac{1}{ {m}^{2} }) }^{2} = 196
 = &gt; {( {m}^{2} + \frac{1}{ {m}^{2} } ) }^{2} = \sqrt{196}

 = &gt; {( {m}^{2} + \frac{1}{ {m}^{2} }) }^{2} = 14.......(1)

Now,
 = &gt; {(m + \frac{1}{m} )}^{2} - 2 = 14 \\ <br />= &gt; {(m + \frac{1}{m} )}^{2} = 14 + 2

 = &gt; {(m + \frac{1}{m} )}^{2} = 16
 = &gt; {(m + \frac{1}{m} ) }^{2} = \sqrt{16 } \\<br /> = &gt; (m + \frac{1}{m} ) = 4........(2)

We know that,

 = &gt; {m}^{3} + \frac{1}{ {m}^{3} } = (m + \frac{1}{m} )( {m}^{2} + \frac{1}{ {m}^{2} } - 1)

From 2 and 3 ,we get:-

 = &gt; {m}^{3} + \frac{1}{ {m}^{3} } = 4(14 - 1) \\<br /> = &gt; {m}^{3} + \frac{1}{ {m}^{2} } = 4 \times 13 \\<br /> = &gt; {m}^{3} + \frac{1}{ {m}^{3} } = 52

Therefore,

(a) = &gt; {m}^{3} + \frac{1}{ {m}^{3} } = 52

From (2)

(b) = &gt; m + \frac{1}{m} = 4


Hope it helps you...

simran206: Gr8 ^_^
Muskan1101: Thankyou ^ ^
Anonymous: Amazing !!
Similar questions