Math, asked by karanparkar9, 3 months ago

If m = 9x2 - 4xy + 5y2 and n = - 3x2 + 2xy - y2, find :
(i) 2m - n
(ii) m + 2n
(iii) m - 3n.​

Answers

Answered by darshanravaldz
19

Answer:

Answer in attachment pls see

Hope it helps you

Pls mark Brainlliest✨

Attachments:
Answered by talasilavijaya
0

Answer:

(i) 2m-n=21x^2- 10xy + 11y^2  

(ii) m+2n=3\big(x^2 +  y^2\big)

(iii) m-3n=18x^2 - 10xy + 8y^2

Step-by-step explanation:

Given the equations:

m = 9x^2 - 4xy + 5y^2 and n = - 3x^2 + 2xy - y^2

(i) 2m-n

Substituting the given equations,

2\big( 9x^2 - 4xy + 5y^2\big)-\big( - 3x^2 + 2xy - y^2\big)

Opening the brackets

18x^2 - 8xy + 10y^2+3x^2- 2xy + y^2

Grouping the like terms

18x^2 +3x^2- 8xy - 2xy + 10y^2+ y^2

= 21x^2- 10xy + 11y^2

(ii) m+2n

Substituting the given equations,

9x^2 - 4xy + 5y^2+2\big( - 3x^2 + 2xy - y^2\big)

Opening the brackets

9x^2 - 4xy + 5y^2 - 6x^2 + 4xy -2 y^2

Grouping the like terms

9x^2 - 6x^2 - 4xy + 4xy+ 5y^2  -2 y^2

= 3x^2 + 3 y^2=3\big(x^2 +  y^2\big)

(iii) m-3n

Substituting the given equations,

9x^2 - 4xy + 5y^2-3\big( - 3x^2 + 2xy - y^2\big)

Opening the brackets

9x^2 - 4xy + 5y^2+9x^2 - 6xy +3y^2

Grouping the like terms

9x^2+9x^2 - 4xy - 6xy + 5y^2 +3y^2

=18x^2 - 10xy + 8y^2

Therefore, (i) 2m-n=21x^2- 10xy + 11y^2  

(ii) m+2n=3\big(x^2 +  y^2\big) and  (iii) m-3n=18x^2 - 10xy + 8y^2

For more problems:

https://brainly.in/question/5254169

https://brainly.in/question/7639599

Similar questions