If m=acos theta -b sin theta,n=a sin theta +bcos theta find m^2+n^2=a^2+b^2
Answers
Answered by
6
Theta is written as A,
➡ m = a cos A - b sin A
Square on both sides,
➡ m² = ( a cosA - b sinA )²
➡ n = a sinA + b cosA
Square on both sides,
➡ n² = ( a sinA + b cosA )²
Adding ( 1 ) & ( 2 ),
⏩ m² + n² = a² cos²A + b² sin²A - 2ab ( sinA cosA ) + a² sin²A + b² cos²A + 2ab ( sinA cosA )
⏩ m² + n² = a² cos²A + a² sin²A + b² sin²A + b² cos²A - 2ab( sinA cosA ) - 2ab( sin² cos²A )
⏩ m² + n² = a²( cos²A + sin²A ) + b²( sin²A + cos²A )
So,
⏩ m² + n² = a²( 1 ) + b²( 1 )
▶ m² + n² = a² + b²
Hence, proved.
➡ m = a cos A - b sin A
Square on both sides,
➡ m² = ( a cosA - b sinA )²
➡ n = a sinA + b cosA
Square on both sides,
➡ n² = ( a sinA + b cosA )²
Adding ( 1 ) & ( 2 ),
⏩ m² + n² = a² cos²A + b² sin²A - 2ab ( sinA cosA ) + a² sin²A + b² cos²A + 2ab ( sinA cosA )
⏩ m² + n² = a² cos²A + a² sin²A + b² sin²A + b² cos²A - 2ab( sinA cosA ) - 2ab( sin² cos²A )
⏩ m² + n² = a²( cos²A + sin²A ) + b²( sin²A + cos²A )
So,
⏩ m² + n² = a²( 1 ) + b²( 1 )
▶ m² + n² = a² + b²
Hence, proved.
sudhavivekkv:
Thank you
Similar questions