Math, asked by sudhavivekkv, 1 year ago

If m=acos theta -b sin theta,n=a sin theta +bcos theta find m^2+n^2=a^2+b^2

Answers

Answered by abhi569
6
Theta is written as A,




➡ m = a cos A - b sin A

Square on both sides,

➡ m² = ( a cosA - b sinA )²

 \bold{ m {}^{2}  = a {}^{2} cos {}^{2} A + b {}^{2}  sin {}^{2} A - 2ab \times  cosA \times sinA  } \:  \:  \:  \:  \:  \: <br /> -  -  -  -  -  -  -(1)





➡ n = a sinA + b cosA

Square on both sides,

➡ n² = ( a sinA + b cosA )²

 \bold{n {}^{2} = a {}^{2} sin {}^{2} A +  {b}^{2} cos{}^{2} A  +  2ab cosA \times sinA  <br />} \:  \:  \:  \:  \:  -  -  -  -  -  -  -  -  - (2)





Adding ( 1 ) & ( 2 ),

⏩ m² + n² = a² cos²A + b² sin²A - 2ab ( sinA cosA ) + a² sin²A + b² cos²A + 2ab ( sinA cosA )



⏩ m² + n² = a² cos²A + a² sin²A + b² sin²A + b² cos²A - 2ab( sinA cosA ) - 2ab( sin² cos²A )


⏩ m² + n² = a²( cos²A + sin²A ) + b²( sin²A + cos²A )




 \fbox{ \text{We know  that sin} {}^{2}  \text{A +} \:   \text{cos} {}^{2} \text{A} = 1}


So,


⏩ m² + n² = a²( 1 ) + b²( 1 )

▶ m² + n² = a² + b²





Hence, proved.

sudhavivekkv: Thank you
abhi569: Welcome
abhi569: :-)
Similar questions