Math, asked by lidiyaM, 9 months ago

if m and. are zeros of polynomial 3x square + 11x - 4. find m cube + n cube ​

Answers

Answered by rajeevr06
0

Answer:

From eq 3x² +11x –4 =0

m + n =  -  \frac{11}{3}

mn =  -  \frac{4}{3}

so,

 {m}^{3}  +  {n}^{3}  =  {(m + n)}^{3}  - 3mn(m + n)

 {m}^{3}  +  {n}^{3}  =  {( -  \frac{11}{3} )}^{3}  - 3 \times ( -  \frac{4}{3} )( -  \frac{11}{3} ) =

 {m}^{3}  +  {n}^{3}  =  -  \frac{1331}{27}  -  \frac{44}{3}  =  - ( \frac{1331  + 396}{27})  =  -  \frac{1727}{27}

Similar questions