Math, asked by utkhon248, 2 months ago

If m and M are the minimum and maximum values of tan−1xtan-1x and the [] represents the greatest integer function then find the value of [−π2−m]+[M−π2]​

Answers

Answered by AayushJp
2

Answer:

-2

Step-by-step explanation:

As m > - π/2

     M < π/2

=>  [- π/2 - m] + [ M - π/2 ] = -1 -1 = -2

Answered by ravilaccs
0

Answer:

Value of the given function is M=5+\sqrt{20} \\ \,&amp;m=5-\sqrt{20}

Step-by-step explanation:

Given:

$F(x)=\frac{\tan ^{2} x+4 \tan x+9}{1+\tan ^{2} x}$, and m$ and $M$are minimum and maximum value.

To find: Value of \pi^{2}  -m+ M - \pi^{2}

Solution:

So $\because \tan x=\frac{\sin x}{\cos x}$; so Replace given function in term of $\sin x$ and $\cos x$

$$\begin{aligned}&amp;\text { so } \\&amp;F(x)=\frac{\frac{\sin ^{2} x}{\cos ^{2} x}+4 \frac{\sin x}{\cos x}+9}{1+\frac{\sin ^{2} x}{\cos ^{2} x}}=\frac{\sin ^{2} x+4 \sin x \cos x+9 \cos ^{2} x}{\cos ^{2} x+\sin ^{2} x} \\&amp;F(x)=\frac{\sin ^{2} x+\cos ^{2} x+4 \sin x \cos x+8 \cos ^{2} x}{\cos ^{2} x+\sin ^{2} x} \\&amp;\because \because \sin x+\cos ^{2} x=1\end{aligned}$$

we get

F(x)=1+4 \sin x \cos x+8 \cos ^{2} x$ \\$\because \quad \cos 2 x=2 \cos ^{2} x-1 \quad$ OR \\$2 \cos ^{2} x=1+\cos 2 x$ \\$F(x)=1+2 \sin 2 x+4(\cos 2 x+1)$ \\$F(x)=1+2 \sin 2 x+4 \cos 2 x+4$ \\$F(x)=5+2 \sin 2 x+4 \cos 2 x$

Now

$${ so },\sqrt{a^{2}+b^{2}} &amp; \leq a \sin x+b \cos x \leq \sqrt{a^{2}+b^{2}} \\{ so }, \sqrt{4+16} &amp; \leq 2 \sin 2 x+4 \cos 2 x \leq \sqrt{4+20}\\\end{aligned}$$

Add '5'

$$5-\sqrt{20} \leq 5+2 \sin 2 x+4 \cos 2 x \leq 5+\sqrt{20}$$

so

$$\begin{aligned}&amp;M=5+\sqrt{20} \\&amp;m=5-\sqrt{20}\end{aligned}$$

Similar questions