Science, asked by akshaysinghparihar20, 3 months ago

if M and m are the minimum and maximum values of y/x for pair of real numbers (b,y) which satisfies the equation ( x-3)² +(y-3)²=6 find the value of m and m ​

Answers

Answered by rifakhattak2012
0

thanks for points also sorry

Answered by knjroopa
0

Explanation:

Given if M and m are the minimum and maximum values of y/x for pair of real numbers (b,y) which satisfies the equation ( x-3)² +(y-3)²=6 find the value of 1/M and 1/m  

  • Now equation of the circle (x – 3)^2 + (y – 3)^2 = 6
  •      So centre = (3,3)
  • Now we have sin theta = √6 / 3√2
  •                         sin theta = 1/√2
  • Now b = √(√3)^2 – (1)^2
  •           = √3 – 11  
  •          = √2
  •      So tan theta = 1/√2
  •     m + n = tan (45 + theta) + tan (45 – theta)
  •                = 1 + tan theta / 1 – tan theta + 1 – tan theta / 1 + tan theta
  •                = (1 + tan theta)^2 + (1 – tan theta)^2 / 1 – tan^2 theta
  •                 = 2 + 2 tan theta / 1 – tan^2 theta
  •                = 2 + 2 (1/√2)^2 / 1 – (1/√2)^2
  •                 =  2 + 1 / 1 – ½  
  •                  = 6
  •    mn = (1 + tan theta / 1 – tan theta) (1 – tan theta / 1 + tan theta)  
  •          = 1
  •      Now 1/m + 1/n = m + n / mn
  •                                 = 6/1
  •                                    = 6
  •      So we get 1/M + 1/m = 6

Reference link will be

https://brainly.in/question/16076442

Similar questions