If m and n are real and
different satisfying the relation
m2 - 4m +4
and
n² = 40-4
, then
(m-* - 4mm)
is equal to:
Answers
Answer:
m/n = p/q
Step-by-step explanation:
What is the condition that the equation (m^2+n^2)x^2-2(mp+nq)x + p^2+q^2=0 has equal roots
(m² + n²)x² - 2(mp + nq)x + (p² + q²) = 0
for ax² + bx + c = 0
To have equal roots
b² = 4ac
here a = m² + n² , b = - 2(mp + nq) c = p² + q²
=> ( - 2(mp + nq))² = 4 (m² + n²)(p² + q²)
=> 4 (m²p² + n²q² + 2mpnq) = 4(m²p² + n²q² + m²q² + n²p²)
Cancelling 4 from both sides
=> m²p² + n²q² + 2mpnq = m²p² + n²q² + m²q² + n²p²
=> m²q² + n²p² - 2mpnq = 0
=> (mq - np)² = 0
=> mq = np
=> m/n = p/q
Answer:
Hi mate,
PLEASE MARK ME AS BRAINLIEST
Step-by-step explanation:
m/n = p/q
What is the condition that the equation (m^2+n^2)x^2-2(mp+nq)x + p^2+q^2=0 has equal roots
(m² + n²)x² - 2(mp + nq)x + (p² + q²) = 0
for ax² + bx + c = 0
To have equal roots
b² = 4ac
here a = m² + n² , b = - 2(mp + nq) c = p² + q²
=> ( - 2(mp + nq))² = 4 (m² + n²)(p² + q²)
=> 4 (m²p² + n²q² + 2mpnq) = 4(m²p² + n²q² + m²q² + n²p²)
Cancelling 4 from both sides
=> m²p² + n²q² + 2mpnq = m²p² + n²q² + m²q² + n²p²
=> m²q² + n²p² - 2mpnq = 0
=> (mq - np)² = 0
=> mq = np
=> m/n = p/q