Math, asked by anagha20, 11 months ago

If m and n are the zeroes of 3x2 + 11x - 4 find
m/n+n/m​

Answers

Answered by LovelyG
22

Answer:

\large{\underline{\boxed{\sf - \dfrac{145}{12}}}}

Step-by-step explanation:

Given polynomial;

3x² + 11x - 4, here

  • a = 3
  • b = 11
  • c = - 4

If m and n are the zeroes -

Sum of zeroes = -b/a

⇒ m + n = -11/3

Product of zeroes = c/a

⇒ m * n = -4/3

Now, we have to find ;

\implies \sf  \frac{m}{n}  +  \frac{n}{m}  \\  \\ \implies \sf  \frac{m {}^{2}  +  {n}^{2} }{mn}

We know that ;

a² + b² = (a + b)² - 2ab

\implies \sf  \frac{ {m}^{2}  +  {n}^{2} }{mn}  \\  \\ \implies \sf  \frac{(m +n ) {}^{2}  - 2mn}{mn}

Putting the value of (m + n) and mn,

\implies \sf  \frac{ - ( \frac{11}{3} ) {}^{2}  - 2 \times ( -  \frac{4}{3} )}{  - \frac{4}{3} }  \\  \\ \implies \sf  \frac{ \frac{121}{9}  +  \frac{8}{3} }{ -  \frac{4}{3} }  \\  \\ \implies \sf  \frac{121 + 24}{9}  \div ( -  \frac{4}{3} ) \\  \\ \implies \sf  \frac{145}{9}  \times ( -  \frac{3}{4} ) \\  \\ \implies \sf  -  \frac{145}{12}

Hence, the answer is (-145/12).

Similar questions