Math, asked by braindot, 1 year ago

If m and n are the zeroes of the polynomial 3x^2+11x-4, find value of m/n+n/m.

Answers

Answered by Anonymous
6

Solution:-

•Since m and n are the zeros of the polynomial 3x²+11x-4, therefore,

 \sf\large \: \:  \:  \: m + n = -   \dfrac{11}{3}  \ \ \ \ \ \ \:...(1)

And

 \sf \large\ \ \ \ \ \: mn =  \dfrac{ - 4}{3}  \ \ \ \ \ \ \ \: ...(2)

Now,

⠀⠀⠀⠀⠀⠀⠀

 \sf\large \ \ \ \ \ \:  \dfrac{m}{n}  +  \dfrac{n}{m}  =  \dfrac{ {m}^{2} +  {n}^{2}  }{mn}

⠀⠀⠀⠀⠀⠀⠀

 \sf\large \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \:   =  \dfrac{ {(m + n) - 2mn}^{2} }{mn}

⠀⠀⠀⠀⠀⠀⠀

 \sf\large \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \: =  \dfrac{ \bigg(  - \dfrac{11}{3} \bigg)^{2} - 2 \bigg( -  \dfrac{4}{3}  \bigg) }{  - \dfrac{4}{3} }

⠀⠀⠀⠀⠀⠀⠀

 \sf\large \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \:  =  \dfrac{ \dfrac{121}{9} +  \dfrac{8}{3}  }{ -  \dfrac{4}{3} }

⠀⠀⠀⠀⠀⠀⠀

 \sf\large \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \:  =  -  \dfrac{145}{9}  \times  \dfrac{3}{4}

⠀⠀⠀⠀⠀⠀⠀

 \sf\large \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \: = -   \dfrac{145}{12}

⠀⠀⠀⠀⠀⠀⠀

Therefore , the required value is -145/12

Similar questions