Math, asked by concecptmusic, 9 months ago

If m and n are the zeroes of the quadratic polynomials
F(x)=x^2-px+q, then find the values of : a) m^2+n^2 b) m^-1 + n^-1​

Answers

Answered by VishnuPriya2801
21

Answer:-

Given Polynomial => x² - px + q = 0

Let , a = 1 ; b = - p ; c = q

We know that,

Sum of the roots = - b/a

m + n = - (- p)/1 = p

And,

Product of the roots = c/a

mn = q/1 = q

a) m² + n² can be written as (m + n)² - 2mn

i.e., m² + n² + 2mn - 2mn.

→ m² + n² = (p)² - 2(q)

m² + n² = p² - 2q

b) m^(- 1) = 1/m and n^(- 1) = 1/n

Taking LCM,

1/m + 1/n = (n + m)/mn

→ (m + n)/mn

Putting values,

→ p/q

m^(- 1) + n^(- 1) = p/q

Answered by shadowsabers03
29

If \alpha and \beta are roots of the quadratic polynomial p(x)=ax^2+bx+c, then,

  • \alpha+\beta=-\dfrac{b}{a}

  • \alpha\beta=\dfrac{c}{a}

Since m and n are roots of the quadratic polynomial F(x)=x^2-px+q, we have,

\longrightarrow m+n=p

\longrightarrow mn=q

Then,

\longrightarrow m^2+n^2=m^2+n^2+2mn-2mn

\longrightarrow m^2+n^2=(m+n)^2-2mn

\longrightarrow\underline{\underline{m^2+n^2=p^2-2q}}

And,

\longrightarrow m^{-1}+n^{-1}=\dfrac{1}{m}+\dfrac{1}{n}

\longrightarrow m^{-1}+n^{-1}=\dfrac{m+n}{mn}

\longrightarrow\underline{\underline{m^{-1}+n^{-1}=\dfrac{p}{q}}}

Similar questions