Math, asked by Ayushshah2004DIS, 1 year ago

if m and n are the zeros of polynaomial ax-5x+c find a and c .if m+n=mn=10

Answers

Answered by BraɪnlyRoмan
38
\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}


\underline{ \bf{Given : }}


'm' and 'n' are the zeroes of :
p(x) = \: a {x}^{2} - 5x + c

It is also given that,

m + n = mn = 10.


 \underline{ \bf{To \: Find :}}

The value of 'a' and 'c'.


 \underline{ \bf{Process :}}


We know,

Sum \: of \: the \: zeroes = \: \frac{ - b}{a}

 = > \: m \: + \: n \: = \: - (\frac{ - 5}{a} )

 = > \: 10 \: = \: \frac{5}{a} \: \: \: \: \: \: \: \: \: \: \: \: \: \: ( \bf{from \: given})

 = > \: a \: = \: \frac{5}{10}

 = > \: a \: = \: \frac{1}{2}


and


Product \: of \: the \: zeroes = \frac{c}{a}

 = > \: m \: \times \: n \: = \: \frac{c}{a}

 = > \: 10 \: = \: \frac{c}{a} \: \: \: \: \: \: \: \: \: \: \: \: \: (\bf{from \: given})

Putting the value of 'a' from above equation, we get

 = > \: 10 \: = \: \frac{c}{ (\frac{1}{2}) }

 = > \: 10 \: = 2c

 = > \: c \: = \: 5


So, we got the value of 'a' and 'c' , which are :

 \boxed{ \: \: \: \bf{ \: a \: = \frac{1}{2} \: \: \: \: \: \: and \: \: \: \: \: b \: = \: 5 \: \: \: \: }}
Similar questions