Math, asked by smrutishree2005, 10 months ago

if m and n are zeroes of the polynomial 3x2+11x+4 then find the value of a) m+n b) m×n c) 1/m+1/n d) m2+n2
Plz it is urgent .....

Answers

Answered by parvd
16

Quadratic Equation:-

x²+11x+4

Given:-

Roots = m and n

To Find:-

1) m+n

2) mxn

3) 1/m +1/n

4) m²+n2

Solution:-

Concept,

Sum of roots = α+β= -b/a

Product of Roots= αβ= c/a

Using these two concepts,

1) m+n = -b/a

=> -11/3

2)mxn = c/a

=> 4/3

3) 1/m+1/n

=> (m+n)/mn

=> m+n= -11/3

and mn = 4/3

=> So,

-11/3 / 4/3

=> 1/m+1/n = -11/4

4) m²+n²

=> (m+n)²-2mn

=> (-11/3)² -2(4/3)

=> 121/9 -8/3

=> => 121-24/9

=> 97/9

Ans

Answered by Cosmique
5

➷➷➷➷➷

If m and n are zeroes of the polynomial

\mathtt{3 {x}^{2} + 11x + 4}

then find the value of

\mathtt{a)m + n} \\  \\ \mathtt{b)m \times n} \\  \\ \mathtt{c) \frac{1}{m} +  \frac{1}{n}} \\  \\ \mathtt{ {m}^{2}  +  {n}^{2}  }

➷➷➷➷SOLUTION➷➷➷➷

Comparing the given quadratic polynomial with the standard form of quadratic polynomial

\tt{3 {x}^{2}  + 11x + 4}

and

\tt{a {x}^{2}  + bx + c}

we will get ,

a = 3 ; b = 11 ; c = 4

Now as we know,

sum of zeroes = - b / a

so,

m + n = - 11 / 3

\tt{\boxed{m + n =    \frac{ - 11}{3} }}

,

and

product of zeroes = c / a

so,

m × n = 4 / 3

\tt{\boxed{m \times n =  \frac{4}{3} }}

Now we have to find

\tt{ \frac{1}{m}  +  \frac{1}{n} } \\  \\  \tt{ =  \frac{m + n}{mn}} \\  \\ \tt{(putting \: values \: from \: above \: answers)} \\  \\ \tt{ =   \frac{ - 11}{3}   \div  \frac{4}{3} =  \frac{ - 11}{3}  \times  \frac{3}{4}  }  \\  \\ \tt{  = \frac{ - 11}{4} } \\  \\ \tt{hence} \\  \\ \tt{\boxed{ \frac{1}{m}  +  \frac{1}{n}  =  \frac{ - 11}{4} }}

next, have to find

 \tt {m}^{2}  +  {n}^{2}

,

\tt {m}^{2}  +  {n}^{2}  =  {(m + n)}^{2} - 2mn \\  \\ \tt \:( putting \: values) \\  \\  =  {( \frac{ - 11}{3}) }^{2}   - 2( \frac{4}{ 3} ) \\  \\ \tt =  \frac{121}{9}  -  \frac{8}{3}  =  \frac{121 - 24}{9}  \\  \\ \tt =  \frac{97}{9}  \\  \\ \tt \: hence \\  \\ \tt{\boxed{ {m}^{2}  +  {n}^{2}  =  \frac{97}{9} }}

Similar questions