If m =(cos∅-sin∅) and n =(cos∅+sin∅), show that √m/n+√n/m =2/√1-tan²∅.
Answers
Answered by
1
Answer:
√m/n+√n/m =2/√1-tan²∅
Step-by-step explanation:
m =(cos∅-sin∅)
n =(cos∅+sin∅)
L.H.S = √m/n+√n/m
= √(cos∅-sin∅)/(cos∅+sin∅) + √(cos∅+sin∅)/(cos∅-sin∅)
= [ (cos∅-sin∅) + (cos∅+sin∅) ] / √(cos∅-sin∅)*(cos∅+sin∅)
= 2*cos∅ / √(cos²∅ - sin²∅) ∵(a + b)*(a - b) = (a² - b²)
= 2 / [ √(cos²∅ - sin²∅) / cos∅ ]
= 2 / [ √1-tan²∅ ] = R.H.S ∵ sin∅ / cos∅ = tan∅
HENCE PROVED
Answered by
36
Similar questions