Math, asked by Olive55, 2 months ago

if m=cosA-sinA and n=cosA+sinA, then prove that m/n - n/m = (-4sinAcosA)/(cos²A-sin²A) = -4/(cotA-tanA).
whoever will answer correctly, i'll mark him/her as brainliest ​

Answers

Answered by LivetoLearn143
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:m = cosA - sinA

and

\rm :\longmapsto\:n = cosA  + sinA

Now, Consider

\rm :\longmapsto\:\dfrac{m}{n}  - \dfrac{n}{m}

\rm \:  =  \:  \:\dfrac{ {m}^{2}  -  {n}^{2} }{mn}

\rm \:  =  \:  \: \dfrac{(m + n)(m - n)}{mn}

\rm \:  =  \:  \: \dfrac{(cosA - sinA + cosA + sinA)(cosA - sinA - cosA - sinA)}{(cosA + sinA)(cosA - sinA)}

\rm \:  =  \:  \: \dfrac{(2cosA)( - 2sinA)}{ {cos}^{2}A -  {sin}^{2}A}

\rm \:  =  \:  \: \dfrac{ - 4 \: cosA \: sinA}{ {cos}^{2}A -  {sin}^{2}A}

Divide numerator and denominator by sinA cosA

\rm \:  =  \:  \: \dfrac{ - 4}{\dfrac{ {cos}^{2}A -  {sin}^{2}A}{cosA \: sinA} }

\rm \:  =  \:  \: \dfrac{ - 4}{\dfrac{ {cos}^{2}A }{cosAsinA}  - \dfrac{ {sin}^{2} A}{cosAsinA} }

\rm \:  =  \:  \: \dfrac{ - 4}{\dfrac{cosA}{sinA}  - \dfrac{sinA}{cosA} }

\rm \:  =  \:  \: \dfrac{ - 4}{cotA - tanA}

Hence, proved

Identities Used :-

\boxed{ \sf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

\boxed{ \sf{ \:  \frac{sinA}{cosA}  = tanA}}

\boxed{ \sf{ \:  \frac{cosA}{sinA} = cotA}}

More to know

\boxed{ \sf{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}

\boxed{ \sf{ \:  {sec}^{2}x  -   {tan}^{2}x = 1}}

\boxed{ \sf{ \:  {cosec}^{2}x  -   {cot}^{2}x = 1}}

Answered by juwairiyahimran18
0

\large\underline{\sf{Solution-}}</p><p>

Given that

\rm :\longmapsto\:m = cosA - sinA \\  \\ and \\  \\ \rm :\longmapsto\:n = cosA + sinA</p><p>

Now, Consider

\rm :\longmapsto\:\dfrac{m}{n} - \dfrac{n}{m} \\  \\ \rm \:  =  \:  \:\dfrac{ {m}^{2} - {n}^{2} }{mn}  \\  \\ \rm \:  =  \:  \: \dfrac{(m + n)(m - n)}{mn} \\  \\ \rm \:  =  \:  \: \dfrac{(cosA - sinA + cosA + sinA)(cosA - sinA - cosA - sinA)}{(cosA + sinA)(cosA - sinA)}  \\  \\ \rm \:  =  \:  \: \dfrac{(2cosA)( - 2sinA)}{ {cos}^{2}A - {sin}^{2}A} </p><p> \\  \\ \rm \:  =  \:  \: \dfrac{ - 4 \: cosA \: sinA}{ {cos}^{2}A - {sin}^{2}A} </p><p> </p><p>

Divide numerator and denominator by sinA cosA

\rm \:  =  \:  \: \dfrac{ - 4}{\dfrac{ {cos}^{2}A - {sin}^{2}A}{cosA \: sinA} }  \\  \\ \rm \:  =  \:  \: \dfrac{ - 4}{\dfrac{ {cos}^{2}A }{cosAsinA} - \dfrac{ {sin}^{2} A}{cosAsinA} } \\  \\ \rm \:  =  \:  \: \dfrac{ - 4}{\dfrac{cosA}{sinA} - \dfrac{sinA}{cosA} }  \\  \\ \rm \:  =  \:  \: \dfrac{ - 4}{cotA - tanA}  \\  \\ Hence, \:  \:  proved \\  \\ Identities  \:  \: Used :- \\  \\ \boxed{ \sf{ \: (x + y)(x - y) = {x}^{2} - {y}^{2}}}  \\  \\ \boxed{ \sf{ \: \frac{sinA}{cosA} = tanA}}

\boxed{ \sf{ \: \frac{cosA}{sinA} = cotA}}

Similar questions