If m = CosecA - SinA and n = SecA – tanA
Prove that: (m^2n)^2÷3 + (mn^2)^2÷3} = 1
Answers
Answer:
We have,
cosec{tex}\theta{/tex} - sin{tex}\theta{/tex} = m and sec{tex}\theta{/tex} - cos{tex}\theta{/tex} = n
{tex}\Rightarrow \quad \frac { 1 } { \sin \theta } - \sin \theta = m \text { and } \frac { 1 } { \cos \theta } - \cos \theta{/tex} = n
{tex}\Rightarrow \quad \frac { 1 - \sin ^ { 2 } \theta } { \sin \theta } = m \text { and } \frac { 1 - \cos ^ { 2 } \theta } { \cos \theta }{/tex} = n
{tex}\Rightarrow \quad \frac { \cos ^ { 2 } \theta } { \sin \theta } = m \text { and } \frac { \sin ^ { 2 } \theta } { \cos \theta }{/tex} = n
{tex}\therefore \quad \left( m ^ { 2 } n \right) ^ { 2 / 3 } + \left( m n ^ { 2 } \right) ^ { 2 / 3 } = \left( \frac { \cos ^ { 4 } \theta } { \sin ^ { 2 } \theta } \times \frac { \sin ^ { 2 } \theta } { \cos \theta } \right) ^ { 2 / 3 } + \left( \frac { \cos ^ { 2 } \theta } { \sin \theta } \times \frac { \sin ^ { 4 } \theta } { \cos ^ { 2 } \theta } \right) ^ { 2 / 3 }{/tex}
= (cos3{tex}\theta{/tex})2/3 + (sin3{tex}\theta{/tex})2/3 = cos2{tex}\theta{/tex} + sin2{tex}\theta{/tex} = 1
Hence, (m2n)2/3 + (mn2)2/3 = 1
Proved,
Explanation:
and
and