Math, asked by jhaabhishek081, 10 months ago

If m=(costheta -sintheta)and n=costheta+sintheta)then prove that √m/n+√n/m=2/√1-tan^2theta​

Answers

Answered by MaheswariS
3

\textbf{Given:}

m=cos\theta-sin\theta

n=cos\theta+sin\theta

\displaystyle\frac{m}{n}=\frac{cos\theta-sin\theta}{cos\theta+sin\theta}

\text{Divide both numerator and denominator of R.H.S by $cos\theta$}

\text{we get}

\displaystyle\frac{m}{n}=\frac{1-tan\theta}{1+tan\theta}

\displaystyle\sqrt{\frac{m}{n}}=\sqrt{\frac{1-tan\theta}{1+tan\theta}}

\implies\bf\displaystyle\sqrt{\frac{m}{n}}=\frac{\sqrt{1-tan\theta}}{\sqrt{1+tan\theta}}......(1)

\text{similarly}

\bf\displaystyle\sqrt{\frac{n}{m}}=\frac{\sqrt{1+tan\theta}}{\sqrt{1-tan\theta}}.......(2)

\text{Adding (1) and (2), we get}

\displaystyle\sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}}=\frac{\sqrt{1-tan\theta}}{\sqrt{1+tan\theta}}+\frac{\sqrt{1+tan\theta}}{\sqrt{1-tan\theta}}

\displaystyle\sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}}=\frac{(\sqrt{1-tan\theta})^2+(\sqrt{1+tan\theta})^2}{\sqrt{1+tan\theta}\sqrt{1-tan\theta}}

\displaystyle\sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}}=\frac{1-tan\theta+1+tan\theta}{\sqrt{1-tan^2\theta}}

\implies\bf\displaystyle\sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}}=\frac{2}{\sqrt{1-tan^2\theta}}

Similar questions