If m^{\log_{3}2}+2^{\log_{3}m}=mlog32+2log3m= 16, then what is the value of mm
Answers
Answered by
0
Step-by-step explanation:
8
3
3
y
1
+3
y
2
+3
y
3
≥(3
y
1
+y
2
+y
3
)
1/3
3
y
1
+3
y
2
+3
y
3
≥3.(3
9
)
1/3
3
y
1
+3
y
2
+3
y
3
≥81
log
3
(3
y
1
+3
y
2
+3
y
3
)≥4
m=4
Now
3
x
1
+x
2
+x
3
≥(x
1
⋅x
2
⋅x
3
)
1/3
(
3
9
)
3
>x
1
x
2
x
3
log
3
(x
1
x
2
x
3
)≤log
3
27
log
3
x
1
+log
3
x
2
+log
3
x
3
≤3
M=3
so log
2
m
3
+log
3
M
2
=log
2
4
3
+log
3
(3)
2
=6+2=8
Answered by
0
Given: mlog32+2log3m= 16
To Find: the value of m
Solution:
We have,
mlog32+2log3m= 16
Now the product rule of log says, xp.xq = xp+q
loga(mn) = logam + logan
2×m log (32×3m)= 16
2m log(96m)= 16
mlog(96m)= 8
8 power m = 96m (Changed the form)
8^m= 96m
Subtracting 96m from both sides
8^M-96m = 0
m= 36.
Therefore, the value of m is 36.
#SPJ2
Similar questions
English,
6 hours ago
Hindi,
6 hours ago
Political Science,
11 hours ago
Accountancy,
11 hours ago
English,
8 months ago
Hindi,
8 months ago