If m+n=5 and mn=6 than find the value of m(cuib)+n(cuib) m (squre) + n (sque)
Answers
Answered by
2
m+n=5
squaring both the side
m²+n²+2mn=25
m²+n²=13
No m³+n³=(n+m)(m²+n²+mn)
=5(13—6)
=35
Hence m²+n²(m³+n³—13(35)=445
Answered by
3
CORRECT QUESTION:
If m + n = 5 and mn = 6 then, find the value of (m³ + n³) (m² + n²).
ANSWER:
- (m³ + n³) (m² + n²) = 455
GIVEN:
- Value of m + n = 5 and mn = 6.
TO FIND:
- The value of (m³ + n³) (m² + n²)
EXPLANATION:
m² + n² = (m + n)² - 2mn
Substitute m + n = 5, mn = 6.
m² + n² = (5)² - 2(6)
m² + n² = 25 - 12
m² + n² = 13
m³ + n³ = (m + n)(m² + n² - mn)
Substitute m + n = 5, mn = 6, m² + n² = 13
m³ + n³ = (5)(13 - 6)
m³ + n³ = (5)(7)
m³ + n³ = 35
(m³ + n³) (m² + n²) = 35 × 13
(m³ + n³) (m² + n²) = 455
Hence the value of (m³ + n³) (m² + n²) = 455
Similar questions