Math, asked by sabbuparveen, 8 months ago

If m+n=5 and mn=6 than find the value of m(cuib)+n(cuib) m (squre) + n (sque)

Answers

Answered by gopalbhatia463
2

m+n=5

squaring both the side

m²+n²+2mn=25

m²+n²=13

No m³+n³=(n+m)(m²+n²+mn)

=5(13—6)

=35

Hence m²+n²(m³+n³—13(35)=445

Answered by BrainlyTornado
3

CORRECT QUESTION:

If m + n = 5 and mn = 6 then, find the value of (m³ + n³) (m² + n²).

ANSWER:

  • (m³ + n³) (m² + n²) = 455

GIVEN:

  • Value of m + n = 5 and mn = 6.

TO FIND:

  • The value of (m³ + n³) (m² + n²)

EXPLANATION:

\blue{ \bigstar{ \boxed{\gray{ \large {\bold{A^{2}  + B^{2}  = (A + B) ^{2}  - 2AB}}}}}}

m² + n² = (m + n)² - 2mn

Substitute m + n = 5, mn = 6.

m² + n² = (5)² - 2(6)

m² + n² = 25 - 12

m² + n² = 13

\orange{ \bigstar{ \boxed{\gray {\bold{A^{3}  + B^{3}  = (A + B)   (A^{2}  + B^{2} - AB) }}}}}

m³ + n³ = (m + n)(m² + n² - mn)

Substitute m + n = 5, mn = 6, m² + n² = 13

m³ + n³ = (5)(13 - 6)

m³ + n³ = (5)(7)

m³ + n³ = 35

(m³ + n³) (m² + n²) = 35 × 13

(m³ + n³) (m² + n²) = 455

Hence the value of (m³ + n³) (m² + n²) = 455

Similar questions