Math, asked by madhav5245, 12 days ago


If m,n,p are roots of the equation x^3-3x^2+3x+7=0 and w is complex cube roots of unity find the value of
\frac{m - 1}{n - 1} + \frac{n - 1}{p - 1} + \frac{p - 1}{m - 1}




​​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given Cubic equation is

\rm :\longmapsto\: {x}^{3} -  {3x}^{2} + 3x + 7 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{3} -  {3x}^{2} + 3x - 1 + 8 = 0

\rm :\longmapsto\: ({x}^{3} -  {3x}^{2} + 3x - 1) + 8 = 0

\rm :\longmapsto\: {(x - 1)}^{3} =  - 8

\purple{\rm :\longmapsto\: {(x - 1)}^{3} =  {( - 2)}^{3}}

\rm :\longmapsto\: {\bigg[\dfrac{x - 1}{ - 2} \bigg]}^{3} = 1

\rm :\longmapsto\:\dfrac{x - 1}{ - 2} =  {\bigg(1\bigg)}^{ \dfrac{1}{3} }

We know

\red{\rm :\longmapsto\:\boxed{\sf{ \:  \:  \: {\bigg(1\bigg) }^{\dfrac{1}{3} } = 1 \: or \: \omega  \: or \:  {\omega }^{2} \:  \:  \: }}} \\

So, using this, we get

\rm :\longmapsto\:\dfrac{x - 1}{ - 2} = 1, \:  \omega ,\:  {\omega }^{2}

\rm :\longmapsto\:x - 1 =  - 2, \:   - 2\omega ,\:  - 2 {\omega }^{2}

\rm :\longmapsto\:x  = 1 - 2, \:  1 - 2\omega ,\:1  - 2 {\omega }^{2}

\rm\implies \:x  =  - 1, \:  1 - 2\omega ,\:1  - 2 {\omega }^{2}

Since, it is given that

\rm :\longmapsto\:m,n,p \: are \: roots \: of \:  {x}^{3} -  {3x}^{2} + 3x + 7 = 0

So,

\rm :\longmapsto\:m =  - 1

\rm :\longmapsto\:n =  1 - 2\omega

\rm :\longmapsto\:p = 1 - 2 {\omega }^{2}

Now, Consider

\rm :\longmapsto\:\dfrac{m - 1}{n - 1}  + \dfrac{n - 1}{p - 1}  + \dfrac{p - 1}{m - 1}

\rm \:  =  \: \dfrac{ - 1 - 1}{1 - 2\omega  - 1}  + \dfrac{1 - 2\omega  - 1}{1 - 2 {\omega }^{2}  - 1}  + \dfrac{1 -  {2\omega }^{2}  - 1}{ - 1 - 1}

\rm \:  =  \: \dfrac{ -2}{- 2\omega}  + \dfrac{ - 2\omega}{- 2 {\omega }^{2}}  + \dfrac{ -  {2\omega }^{2}}{ -2}

\rm \:  =  \: \dfrac{1}{\omega}  + \dfrac{1}{\omega}  +  {\omega }^{2}

\rm \:  =  \:  {\omega }^{2} +  {\omega }^{2}    +  {\omega }^{2}

\rm \:  =  \:  3{\omega }^{2}

Hence,

\rm\implies \:\boxed{\tt{ \dfrac{m - 1}{n - 1}  + \dfrac{n - 1}{p - 1}  + \dfrac{p - 1}{m - 1}  = 3 {\omega }^{2} }} \\

Answered by EmperorSoul
4

\large\underline{\sf{Solution-}}

Given Cubic equation is

\rm :\longmapsto\: {x}^{3} -  {3x}^{2} + 3x + 7 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{3} -  {3x}^{2} + 3x - 1 + 8 = 0

\rm :\longmapsto\: ({x}^{3} -  {3x}^{2} + 3x - 1) + 8 = 0

\rm :\longmapsto\: {(x - 1)}^{3} =  - 8

\purple{\rm :\longmapsto\: {(x - 1)}^{3} =  {( - 2)}^{3}}

\rm :\longmapsto\: {\bigg[\dfrac{x - 1}{ - 2} \bigg]}^{3} = 1

\rm :\longmapsto\:\dfrac{x - 1}{ - 2} =  {\bigg(1\bigg)}^{ \dfrac{1}{3} }

We know

\red{\rm :\longmapsto\:\boxed{\sf{ \:  \:  \: {\bigg(1\bigg) }^{\dfrac{1}{3} } = 1 \: or \: \omega  \: or \:  {\omega }^{2} \:  \:  \: }}} \\

So, using this, we get

\rm :\longmapsto\:\dfrac{x - 1}{ - 2} = 1, \:  \omega ,\:  {\omega }^{2}

\rm :\longmapsto\:x - 1 =  - 2, \:   - 2\omega ,\:  - 2 {\omega }^{2}

\rm :\longmapsto\:x  = 1 - 2, \:  1 - 2\omega ,\:1  - 2 {\omega }^{2}

\rm\implies \:x  =  - 1, \:  1 - 2\omega ,\:1  - 2 {\omega }^{2}

Since, it is given that

\rm :\longmapsto\:m,n,p \: are \: roots \: of \:  {x}^{3} -  {3x}^{2} + 3x + 7 = 0

So,

\rm :\longmapsto\:m =  - 1

\rm :\longmapsto\:n =  1 - 2\omega

\rm :\longmapsto\:p = 1 - 2 {\omega }^{2}

Now, Consider

\rm :\longmapsto\:\dfrac{m - 1}{n - 1}  + \dfrac{n - 1}{p - 1}  + \dfrac{p - 1}{m - 1}

\rm \:  =  \: \dfrac{ - 1 - 1}{1 - 2\omega  - 1}  + \dfrac{1 - 2\omega  - 1}{1 - 2 {\omega }^{2}  - 1}  + \dfrac{1 -  {2\omega }^{2}  - 1}{ - 1 - 1}

\rm \:  =  \: \dfrac{ -2}{- 2\omega}  + \dfrac{ - 2\omega}{- 2 {\omega }^{2}}  + \dfrac{ -  {2\omega }^{2}}{ -2}

\rm \:  =  \: \dfrac{1}{\omega}  + \dfrac{1}{\omega}  +  {\omega }^{2}

\rm \:  =  \:  {\omega }^{2} +  {\omega }^{2}    +  {\omega }^{2}

\rm \:  =  \:  3{\omega }^{2}

Hence,

\rm\implies \:\boxed{\tt{ \dfrac{m - 1}{n - 1}  + \dfrac{n - 1}{p - 1}  + \dfrac{p - 1}{m - 1}  = 3 {\omega }^{2} }} \\

Similar questions