English, asked by devarikanya, 6 months ago

If m-nx+28x²+12x³+9x⁴ is a perfect square, then find the values of m and n.​

Answers

Answered by ritimaurya242
2

Explanation:

It is given that the polynomial m−nx+28x

2

+12x

3

+9x

4

is a perfect square, we must equate it to the square of general form of equation that is (ax

2

+bx+c)

2

as shown below:

9x

4

+12x

3

+28x

2

−nx+m=(ax

2

+bx+c)

2

⇒9x

4

+12x

3

+28x

2

−nx+m=(ax

2

)

2

+(bx)

2

+(c)

2

+(2×ax

2

×bx)+(2×bx×c)+(2×c×ax

2

)

(∵(a+b+c)

2

=a

2

+b

2

+c

2

+2ab+2bc+2ca)

⇒9x

4

+12x

3

+28x

2

−nx+m=a

2

x

4

+b

2

x

2

+c

2

+2abx

3

+2bcx+2acx

2

Now, comparing the coefficients, we get:

a

2

=9,b

2

+2ac=28,c

2

=m,2ab=12,2bc=−n

a

2

=9

⇒a=3

2ab=12

⇒2×3×b=12

⇒6b=12

⇒b=2

b

2

+2ac=28

⇒2

2

+(2×3c)=28

⇒4+6c=28

⇒6c=28−4

⇒6c=24

⇒c=4

c

2

=m

⇒m=4

2

⇒m=16

2bc=−n

⇒n=−2bc

⇒n=−2×2×4

⇒n=−16

Hence, m=16 and n=−16.

Answered by nittuamu
2

Answer:

m=16 ,n=-16

Explanation:

It is given that polynomial m-nx+28x^2+12x^3+9x^4 is a perfect square ,we must equate it to the square of general form of equation that is (ax^2+bx+c)^2 as shown below :

9x^4+12x^3+28x^2-nx+m=(ax^2+bx+c)^2

9x^4+12x^3+28x^2-nx+m=(ax^2)^2+(bx) ^2+(c)^2

+(2ax^2*bx)+(2*bx*c)

+(2*c*ax^2)

[since (a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac)

9x^4+12x^3+28x^2-nx+m=a^2x^4+b^2x^2+c^2

+2abx^3+2bcx+2acx^2

Now, comparing the coefficients,we get

a^2=9

b^2+2ac=28

c^2=m

2ab=12

2bc= -n

a^2=9

a=3

2ab=12

2*3*b=12

6b=12

b=2

b^2+2ac=28

(2)^2+2*3*c=28

4+6c=28

6c=28-4

6c=24

c=4

c^2=m

m=4^2

m=16

2bc= -n

n= -2bc

n= -2*2*4

n= -16

So, m=16

n= -16

Similar questions