Math, asked by mrinalikasubash2005, 7 months ago

If m-nx +28xsquare + 12xcube+9xpower4 is a perfect square, find the values of m and n

Answers

Answered by tejaswinimogal11
0

Answer:

Step-by-step explanation:

It is given that the polynomial m−nx+28x  

2

+12x  

3

+9x  

4

 is a perfect square, we must equate it to the square of general form of equation that is (ax  

2

+bx+c)  

2

 as shown below:

9x  

4

+12x  

3

+28x  

2

−nx+m=(ax  

2

+bx+c)  

2

 

⇒9x  

4

+12x  

3

+28x  

2

−nx+m=(ax  

2

)  

2

+(bx)  

2

+(c)  

2

+(2×ax  

2

×bx)+(2×bx×c)+(2×c×ax  

2

)

(∵(a+b+c)  

2

=a  

2

+b  

2

+c  

2

+2ab+2bc+2ca)

⇒9x  

4

+12x  

3

+28x  

2

−nx+m=a  

2

x  

4

+b  

2

x  

2

+c  

2

+2abx  

3

+2bcx+2acx  

2

 

Now, comparing the coefficients, we get:

a  

2

=9,b  

2

+2ac=28,c  

2

=m,2ab=12,2bc=−n

a  

2

=9

⇒a=3

2ab=12

⇒2×3×b=12

⇒6b=12

⇒b=2

b  

2

+2ac=28

⇒2  

2

+(2×3c)=28

⇒4+6c=28

⇒6c=28−4

⇒6c=24

⇒c=4

c  

2

=m

⇒m=4  

2

 

⇒m=16

2bc=−n

⇒n=−2bc

⇒n=−2×2×4

⇒n=−16

Hence, m=16 and n=−16.

Similar questions