if m=sin theta+cos theta and n=tan theta+cot theta then prove that n(m^2-1)=2
Answers
Answered by
20
Hey!
m = Sin∅ + Cos∅
n = tan∅ + cot∅
__________
n = tan∅ + cot∅
[ tan∅ = sin∅/cos∅ and
cot∅ = cos∅/sin∅]
n = sin∅/cos∅ + cos∅/sin∅
n = ( sin²∅ + cos²∅ )/sin∅cos∅
[ sin²∅ + cos²∅ = 1 ]
n = 1/sin∅ cos∅
• Taking LHS
n ( m² - 1 )
1/sin∅cos∅ [ ( sin∅ + cos∅ )² - 1 ]
[ Using identity :- ( a + b )² = a² + b² + 2ab ]
= 1/sin∅cos∅ [ sin²∅ + cos²∅ + 2sin∅cos∅ - 1 ]
= 1/sin∅cos∅ [ 1 + 2sin∅cos∅ - 1 ]
= 1/sin∅cos∅ [ 2sin∅cos∅ ]
= 2
LHS = RHS !!
Hence , proved !!
m = Sin∅ + Cos∅
n = tan∅ + cot∅
__________
n = tan∅ + cot∅
[ tan∅ = sin∅/cos∅ and
cot∅ = cos∅/sin∅]
n = sin∅/cos∅ + cos∅/sin∅
n = ( sin²∅ + cos²∅ )/sin∅cos∅
[ sin²∅ + cos²∅ = 1 ]
n = 1/sin∅ cos∅
• Taking LHS
n ( m² - 1 )
1/sin∅cos∅ [ ( sin∅ + cos∅ )² - 1 ]
[ Using identity :- ( a + b )² = a² + b² + 2ab ]
= 1/sin∅cos∅ [ sin²∅ + cos²∅ + 2sin∅cos∅ - 1 ]
= 1/sin∅cos∅ [ 1 + 2sin∅cos∅ - 1 ]
= 1/sin∅cos∅ [ 2sin∅cos∅ ]
= 2
LHS = RHS !!
Hence , proved !!
Answered by
1
hey there
here's ur answer.
Attachments:
Similar questions