if m sin theta+r cos theta=p and m cos theta-n sin theta=q,then prove that m^2+n^2=p^2+p^2
Answers
Answered by
92
m Sin Ф + n Cos Ф = p
=> m² Sin² Ф + n² Cos² Ф + 2 m n Sin Ф Cos Ф = p²
m Cos Ф - n Sin Ф = q
=> m² Cos² Ф + n² Sin²Ф - 2 m n Sin Ф Cos Ф = q²
add the two equations:
m² (sin²Ф +Cos²Ф) + n²(sin²Ф+Cos²Ф) = p² + q²
m² + n² = p² + q²
=> m² Sin² Ф + n² Cos² Ф + 2 m n Sin Ф Cos Ф = p²
m Cos Ф - n Sin Ф = q
=> m² Cos² Ф + n² Sin²Ф - 2 m n Sin Ф Cos Ф = q²
add the two equations:
m² (sin²Ф +Cos²Ф) + n²(sin²Ф+Cos²Ф) = p² + q²
m² + n² = p² + q²
Anonymous:
Thank u so much. It helped me a lot!!!
Answered by
51
Step-by-step explanation: Please find the attachment...
HOPE IT HELPS!!!
Attachments:
Similar questions
English,
8 months ago
Math,
8 months ago
Social Sciences,
1 year ago
Chemistry,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago