If m sinA= n cosA , prove tanA + cotA/tanA -cotA =n sinA + m cosA/n sinA - m cos A = n2 +m2/n2 - m2
Answers
Answered by
7
Solution -
Given:
msin A = ncosA
Therefore, sinA/cosA = n/m = tanA and cosA/sinA = m/n = cotA
Now,
LHS = (tanA + cotA) / (tanA - cotA)
Substitute the value of tanA ans cotA
LHS = (n/m + m/n) / (n/m - m/n)
= ((n^2 + m^2) / mn) / ((n^2 - m^2) / mn)
= (n^2 + m^2) / (n^2 - m^2)
= RHS
Also,
LHS = (nsinA + mcosA / nsinA - mcosA)
Divide numerator and denominator by cosA
LHS = (ntanA + m) / (ntanA - m)
Substitute the value of tanA = n/m
LHS = (n * n/m + m) / n * n/m - m)
= ((n^2 + m^2) / m) / ((n^2 - m^2) / m)
= (n^2 + m^2) / (n^2 - m^2)
= RHS
Hence proved.... tanA + cotA/tanA -cotA =n sinA + m cosA/n sinA - m cos A = (n^2 +m^2) / (n^2 - m^2)
Note - I am also attaching the file for this solution
Given:
msin A = ncosA
Therefore, sinA/cosA = n/m = tanA and cosA/sinA = m/n = cotA
Now,
LHS = (tanA + cotA) / (tanA - cotA)
Substitute the value of tanA ans cotA
LHS = (n/m + m/n) / (n/m - m/n)
= ((n^2 + m^2) / mn) / ((n^2 - m^2) / mn)
= (n^2 + m^2) / (n^2 - m^2)
= RHS
Also,
LHS = (nsinA + mcosA / nsinA - mcosA)
Divide numerator and denominator by cosA
LHS = (ntanA + m) / (ntanA - m)
Substitute the value of tanA = n/m
LHS = (n * n/m + m) / n * n/m - m)
= ((n^2 + m^2) / m) / ((n^2 - m^2) / m)
= (n^2 + m^2) / (n^2 - m^2)
= RHS
Hence proved.... tanA + cotA/tanA -cotA =n sinA + m cosA/n sinA - m cos A = (n^2 +m^2) / (n^2 - m^2)
Note - I am also attaching the file for this solution
Attachments:
Similar questions
Math,
8 months ago
English,
8 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago
Computer Science,
1 year ago