Math, asked by Mariyameena3438, 10 months ago

If m= sinx/siny and n= cosx/cosy then find (m2-n2)sin2y

Answers

Answered by avenger2004rutu
3

Answer:

1 -  {n}^{2}

Step-by-step explanation:

plz rerer to the pic

Attachments:
Answered by JeanaShupp
3

Given: m= \dfrac{\sin x}{\sin y} \text { and } m= \dfrac{\cos x}{\cos y}

To find: (m^2-n^2) \sin^2 y

Step-by-step explanation:

Therefore substitution the value of m and n in (m^2-n^2) \sin^2 y we get

((\dfrac{\sin x}{\sin y} )^2-(\dfrac{\cos x}{\cos y} )^2)\sin^2 y \\\\\Rightarrow (\dfrac{\sin^2 x}{\sin^2 y} -\dfrac{\cos^2 x}{\cos^2 y} )\sin^2 y \\\\\Rightarrow (\dfrac{\cos^2y \sin^2 x-\cos^2x \sin^2y}{\sin^2 y \cos^2 y} )\sin^2 y \\\\\Rightarrow (\dfrac{\cos^2y (1-\cos^2 x)-\cos^2x (1-\cos^2y)}{\sin^2 y \cos^2 y} )\sin^2 y

\because \sin^2 A +\cos^2 A= 1

Now we have

\\\\\Rightarrow \dfrac{\cos^2 y -\cos^2x \cos^2y -\cos^2 x+\cos^2x \cos^2 y}{\cos^2 y}\\\\\Rightarrow   \dfrac{\cos^2 y -\cos^2 x }{\cos^2 y}\\\\\Rightarrow  1- \dfrac{\cos^2x}{\cos ^2 y} \\\\\Rightarrow 1-n^2

Hence the value of  (m^2-n^2) \sin^2 y  is 1-n^2

Similar questions