Math, asked by taranjeetsingh7684, 8 months ago

If m = tan ɵ +sin ɵ and n= tan ɵ - sin ɵ ,show that m2 – n2 = 4√mn​

Answers

Answered by jtg07
17

Step-by-step explanation:

\huge\begin{lgathered}\frak\red{answEr}\end{lgathered}

\tt assuming\:theta\:to\:be\:a

\huge\mathfrak\blue{given::}

\tt m\:=\:tana + sina

\tt n\:=\:tana-sina

\huge\mathfrak\green{to\:prove::}

\tt m^2\:-\:n^2\:=\:4✓mn

we know that,

\tt (tana + Sina)^2\:-\:(tana-sina)^2=

\tt tan^2a + sin^2 a + 2tanasina - tan^2a

\tt - sin^2a + 2tanasina

====>\tt  4tanasina

\tt also,

\tt m=tana + Sina

\tt n = tana-sina

replacing in above equation,,

\tt m^2-n^2= 4tanasina.......l.h.s

\tt 4✓mn = R.H.S.

=====>\tt  4×✓(tan^2a-sin^2a)

=====> \tt 4×✓(\dfrac{sin^2a}{cos^2a} - sin^2a)

=====> \tt taking\:lcm,

=====> \tt 4 × ✓ (\dfrac{sin^2a-sin^2acos^2a}{cos^2a})

=====>\tt  4 × ✓\dfrac{sin^2a(1-cos^2a)}{cos^2a}

=====>\tt 4 × Sina ✓\dfrac {sin^2a}{cos^2a}

=====> \tt 4× sina×tana

since,

\tt L.H.S=R.H.S = 4sinatana

\tt the\:question\:gets\:proved

\huge\begin{lgathered}\frak\red{hoPe\:iT\:helPs}\end{lgathered}

Answered by pmisang193
1

Answer:

m=tanɵ +sinɵ and n= tanɵ - sinɵ

m2-n2=(tanɵ +sinɵ)2-(tanɵ - sinɵ)2

=2tanɵ+2sinɵ-2tanɵ+2sinɵ

=4sinɵ

Again, m = tanɵ+sinɵ=>sinɵ=m- tanɵ••••••1

n=tanɵ - sinɵ=>sinɵ=tanɵ-n••••••••2

From 1 & 2=>

m- tanɵ=tanɵ-n

=>2tanɵ=m+n

=>tanɵ=m+n/2•••••••••••3

Now, putting the value of tanɵ in eq.n 1

sinɵ=m-m+n/2

=m+n/2

So,4sinɵ=4(m+n/2)

=2(m+n)

May be the Question is send wrongly.

Similar questions