If m = tanA + sinA and n = tanA - sinA, then express (m² - n²)² in terms of m and n.
Options are given below.
(A) 16mn
(B) 4mn
(C) 32mn
(D) 8mn
Answers
Answer:
Step-by-step explanation:
Given,
m = tanA + sinA
squaring both sides, we get
Also,
n = tanA - sinA
squaring both sides, we get
Subtracting eqn (ii) from (ii),
we get,
Again, squaring both sides, we get
But,
so,
putting the value, we get
But,
Therefore,
Hence,
Option (A)16mn is correct answer.
Question :
If m = tan A + sin A and n = tan A - sin A , then express (m² - n²)² in terms of m and n ,
- 16 mn
- 4 mn
- 32 mn
- 8 mn
Solution :
Given ,
m = tan A + sin A
➠ m² = (tan A + sin A)²
➠ m² = tan²A + sin²A + 2 tan A.sin A
n = tan A - sin A
➠ n² = (tan A - sin A)²
➠ n² = tan²A + sin²A - 2 tan A.sin A
★ ════════════════════ ★
m² - n²
➠ tan²A + sin²A + 2 tan A.sin A - ( tan²A + sin²A - 2 tan A.sin A )
➠ tan²A + sin²A + 2 tan A.sin A - tan²A - sin²A + 2 tan A.sin A
➠ 4 tan A . sin A
So , m² - n² = 4 tan A . sin A
Let's calculate (m² - n²)²
- sin²A = 1 - cos²A
- a² - b² = (a + b)(a - b)
Option (1)
★ ════════════════════ ★