if m=tanA-sinA ,n=tanA-sinA, prove that m²-n²=16mn
Answers
Answered by
4
Step-by-step explanation:
m=tanA+sinA, n=tanA-sinA
m²-n²=(tanA+sinA)²-(tanA-sinA)²
m²-n²={tan²A+2tanAsinA+sin²A} -{tan²A-2tanAsinA+sin²A}
m²-n²=tan²A+2tanAsinA+sin²A-tan²A. +2tanAsinA-sin²A
m²-n²=4tanAsinA
(m²-n²)²=16tan²Asin²A
(m²-n²)²=16{tan²A(1-cos²A)
=16{tan²A-tan²Acos²A}
=16(tan²A-sin²A)
=16(tanA-sinA)(tanA-sinA)(m²-n²)²=16mn
Similar questions
English,
6 months ago
Chemistry,
6 months ago
Computer Science,
1 year ago
Computer Science,
1 year ago
Biology,
1 year ago
Biology,
1 year ago