Math, asked by shahadkt123, 8 months ago

If m tanA=tan mA , show that (sin^2 mA)÷(sin^2 A) = (m^2)÷{1+((m^2)-1) sin^2A}

Answers

Answered by MaheswariS
0

\textbf{Given:}

m\,tanA=tan\,mA

\textbf{To prove:}

\dfrac{sin^2mA}{sin^2A}=\dfrac{m^2}{1+(m^2-1)sin^2A}

\textbf{Solution:}

\text{Consider,}

m\,tanA=tan\,mA

\implies\,m=\dfrac{tan\,mA}{tanA}

\text{Now,}

\dfrac{m^2}{1+(m^2-1)sin^2A}

=\dfrac{\frac{tan^2mA}{tan^2A}}{1+(\frac{tan^2mA}{tan^2A}-1)sin^2A}

=\dfrac{tan^2mA}{tan^2A+(tan^2mA-tan^2A)sin^2A}

=\dfrac{tan^2mA}{tan^2A+tan^2mA\,sin^2A-tan^2Asin^2A}

=\dfrac{tan^2mA}{tan^2A-tan^2Asin^2A+tan^2mA\,sin^2A}

=\dfrac{tan^2mA}{tan^2A(1-sin^2A)+tan^2mA\,sin^2A}

=\dfrac{tan^2mA}{tan^2A\,cos^2A+tan^2mA\,sin^2A}

=\dfrac{tan^2mA}{(\frac{sin^2A}{cos^2A})\,cos^2A+tan^2mA\,sin^2A}

=\dfrac{tan^2mA}{sin^2A+tan^2mA\,sin^2A}

=\dfrac{tan^2mA}{sin^2A(1+tan^2mA)}

=\dfrac{tan^2mA}{sin^2A\,sec^2mA}

=\dfrac{\frac{sin^2mA}{cos^2mA}}{sin^2A(\frac{1}{cos^2mA})}

=\dfrac{sin^2mA}{sin^2A}

\implies\bf\dfrac{sin^2mA}{sin^2A}=\dfrac{m^2}{1+(m^2-1)sin^2A}

Find more:

If l tan A + m sec A = n and l’tan A – m’sec A = n’, then show that (nl’ – ln’/ml’ + lm’)^2 = 1 + (nm’ – mn’/ lm’ + ml’) ^2

https://brainly.in/question/683329

Similar questions