If m times mth term of an ap ia n times nth term of the ap then find the( m+n)th term
Answers
Answered by
7
Hey there !!
Given :-
→( m·a ) = ( n·a ) .
To prove :-
→ ( m + n )th [ a ] = 0.
Solution :-
Let a be the first term and d be the common difference of the given AP.
Then,
a = a + ( m - 1 )d.
And,
a = a + ( n - 1 )d.
Now,
→ ( m·a ) = ( n·a ) .
⇒ m·{ a + ( m -1 )d } = n· { a + ( n - 1 )d }.
⇒ am + m²d - md = an + n²d - nd.
⇒ am - an + m²d - n²d - md + nd = 0.
⇒ a( m - n ) + d· { ( m² - n² ) - ( m - n ) } = 0.
⇒ ( m - n ) · { a + ( m + n - 1 )}d = 0.
⇒ ( m - n ) · a = 0.
⇒ a = 0.
Hence, it is proved.
THANKS
#BeBrainly.
Given :-
→( m·a ) = ( n·a ) .
To prove :-
→ ( m + n )th [ a ] = 0.
Solution :-
Let a be the first term and d be the common difference of the given AP.
Then,
a = a + ( m - 1 )d.
And,
a = a + ( n - 1 )d.
Now,
→ ( m·a ) = ( n·a ) .
⇒ m·{ a + ( m -1 )d } = n· { a + ( n - 1 )d }.
⇒ am + m²d - md = an + n²d - nd.
⇒ am - an + m²d - n²d - md + nd = 0.
⇒ a( m - n ) + d· { ( m² - n² ) - ( m - n ) } = 0.
⇒ ( m - n ) · { a + ( m + n - 1 )}d = 0.
⇒ ( m - n ) · a = 0.
⇒ a = 0.
Hence, it is proved.
THANKS
#BeBrainly.
durgasivani:
gdd
Similar questions