Math, asked by atri04759, 8 months ago

if m times of mth term of an AP is equal to nth times of nth term then find the m+n th term of the AP​

Answers

Answered by RISH4BH
104

\Large\underline{\textsf{\textbf{\purple{$\mapsto$Given:}}}}

  • m times the mth term of an AP is equal to nth times of nth term .

\Large\underline{\textsf{\textbf{\purple{$\mapsto$To\:Find:}}}}

  • The ( m + n )th term of the AP .

\Large\underline{\textsf{\textbf{\purple{$\mapsto$Answer:}}}}.

Given that m times the mth term of an AP is equal to nth times of nth term . So , we know the formula to find the k th term of an Arthemetic Progression as ;

\qquad\qquad\large\boxed{\pink{\bf\blue{\dag}\:T_k\:=\:a+(k-1)d}}

Where ,

  • \red{\sf T_k \:is\: the\: required\:term.}
  • \red{\sf a \:is\: the\:first\:term.}
  • \red{\sf d\:is\: the\: common\: difference.}

\underline{\underline{\green{\mapsto \sf mth\:term\:of\: the\:AP:-}}}

\tt:\implies T_k = a + (k-1)d

\bf\implies T_m = a + (m-1)d

\rule{200}2

\underline{\underline{\green{\mapsto \sf nth\:term\:of\: the\:AP:-}}}

\tt:\implies T_k = a + (k-1)d

\bf\implies T_m = a + (n-1)d

\rule{200}2

\underline{\underline{\pink{\mapsto \sf \mathscr{A} ccording\:\;\mathscr{T}o\:\; \mathscr{Q} uestion\::-}}}

\tt:\implies m( T_m) = n( T_n)

\tt:\implies m[ a + (m-1)d = n[ a + (n-1)d]

\tt:\implies am + m(m-1)d = an + n(n-1)d

\tt:\implies am + m^2d - md = an + n^2d - nd

\tt:\implies ( am + m^2d - md ) - ( an + n^2d - nd ) = 0

\tt:\implies  am + m^2d-md -an -n^2d+nd = 0

\tt:\implies am - an + m^2d - n^2d -md+nd

\tt:\implies a( m -n ) + d ( m^2-n^2) - d ( m - n)=0

\tt:\implies a(m-n) + d(m+n)(m-n)-d(m-n) = 0

\tt:\implies (m-n) [ a + d(m+n) - d ] = 0

\tt:\implies [ a + d(m+n) - d ] =\dfrac{0}{m-n}

\tt:\implies  a + d(m+n)-d = 0

\tt:\implies a + \lgroup ( m + n) - 1 \rgroup d  = 0

\underline{\boxed{\red{\tt{\longmapsto T_{m+n}=0}}}}

\boxed{\green{\pink{\dagger}\bf Hence\: the\:(m+n)th\:term\:is\:0.}}


Cynefin: Great! :D
Answered by ItźDyñamicgirł
34

 \mapsto\sf \color{blue} \: \huge Given

  • M term of mth term of an AP is equal to nth times of nth.

\sf \mapsto\color{cyan} \huge Required \: to \: Find

The m + n th term of the AP

 \sf \mapsto \color{pink} \: \huge Solution

 \sf \: T_{n} = a  +  (n - 1)d

 \sf \: n  \: T_{n} = m \:  T_{n}

 \sf \implies \: n(a + (n - 1)d) = m(a + (m - 1)d)

 \sf \implies \: n \: a +  {n}^{2}  \: d \:  - nd = a \: m \:  +  {m}^{2}  \: d - md

 \sf \implies \: a(n - m) + d( {n}^{2} -   {m}^{2} ) - (n - m) \: d \:  = 0

 \sf \implies \: (n - m)(a + d(n + m - 1)) = 0

 \sf \implies \: a + (n + m - 1) \: d = 0

 \bf \implies \color{red} \: T_{m + n} = 0

\bf \color{green}Therefore \: the \: m + n \: th \: term \:  of \: the  \: AP \: is \: 0

Similar questions