if m times the mth term of an A.P. is equal to the n times the nth term then show that the ( m+n)th term of the A.P. is zero.
Answers
Answered by
16
нєу тнєяє ιѕ αиѕωєя !!!!!
ι нσρє уσυ нєℓρ !!!
m times mth term= n times nth term
m am=n an
=> m{a+(m-1)d}= n{a+(n-1)d}
=> m {a+(m-1)d} - n{a+(n-1)d}=0
=> am +m(m-1)d -an -n(n-1)d=0
=>am-an +m(m-1)d -n(n-1)d=0
=>a(m-n)+{m(m-1)-n(n-1)}d=0
=> a(m-n) +{m2-m-n2+n}d=0
=> a((m-n)+ {m2-n2-(m-n)} =0
=> a(m-n)+{(m-n)(m+n)-(m-n)}d =0
=> a(m-n)[(m-n){m+n-1}]d =0
=> (m-n) [a+(m+n-1)d]=0
=> a+(m+n-1)d=0
.`. am+n =0
Hence, its (m+n)th term =0
hope this helpss.....
ι нσρє уσυ нєℓρ !!!
m times mth term= n times nth term
m am=n an
=> m{a+(m-1)d}= n{a+(n-1)d}
=> m {a+(m-1)d} - n{a+(n-1)d}=0
=> am +m(m-1)d -an -n(n-1)d=0
=>am-an +m(m-1)d -n(n-1)d=0
=>a(m-n)+{m(m-1)-n(n-1)}d=0
=> a(m-n) +{m2-m-n2+n}d=0
=> a((m-n)+ {m2-n2-(m-n)} =0
=> a(m-n)+{(m-n)(m+n)-(m-n)}d =0
=> a(m-n)[(m-n){m+n-1}]d =0
=> (m-n) [a+(m+n-1)d]=0
=> a+(m+n-1)d=0
.`. am+n =0
Hence, its (m+n)th term =0
hope this helpss.....
smartAbhishek11:
нιι
Answered by
7
I hope this will help you
Attachments:
Similar questions