If m times the mth term of an AP is equal to n times its nth term, find (m+n)th term
Answers
Answered by
0
Am = m [a + (m-1)d]
An = n[a + (n- 1)d]
Now (m + th term is given by
Am + An
[ma + m (m-1)d] + [na + n (n-1)d]
am + an + m(m-1)d + n (n-1)d
a (m+n) + [m (m-1) + n (n-1)]d
Thanks
An = n[a + (n- 1)d]
Now (m + th term is given by
Am + An
[ma + m (m-1)d] + [na + n (n-1)d]
am + an + m(m-1)d + n (n-1)d
a (m+n) + [m (m-1) + n (n-1)]d
Thanks
Answered by
0
Answer:
Let the first term of AP = a
common difference = d
We have to show that (m+n)th term is zero or a + (m+n-1)d = 0
mth term = a + (m-1)d
nth term = a + (n-1) d
Given that m{a +(m-1)d} = n{a + (n -1)d}
⇒ am + m²d -md = an + n²d - nd
⇒ am - an + m²d - n²d -md + nd = 0
⇒ a(m-n) + (m²-n²)d - (m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0
⇒ a(m-n) + (m-n)(m+n -1) d = 0
⇒ (m-n){a + (m+n-1)d} = 0
⇒ a + (m+n -1)d = 0/(m-n)
⇒ a + (m+n -1)d = 0
Proved!
Similar questions
Science,
8 months ago
Business Studies,
8 months ago
English,
8 months ago
Geography,
1 year ago
English,
1 year ago