If m times the mth term of an AP is equal to n times the nth term of same AP , prove that (m+n)th term of the AP is 0.
Answers
Answered by
2
A.T.P,
m{ 2a +(m-1)d}=n{2a+(n-1)d}
m{2a+md-d}=n{2a+(n-1)d}
2am+m2d-md+2an+n2d-nd
2am-2an+m2d-n2d-md+nd=0 [m2 and n2 means "m" square and "n" square]
2a(m-n)+d(m2-n2)-d(m-n)+0
(m-n){2a+(m+n-1)d}=0
2a+(m+n-1)d=0
(m+n)th term=0
m{ 2a +(m-1)d}=n{2a+(n-1)d}
m{2a+md-d}=n{2a+(n-1)d}
2am+m2d-md+2an+n2d-nd
2am-2an+m2d-n2d-md+nd=0 [m2 and n2 means "m" square and "n" square]
2a(m-n)+d(m2-n2)-d(m-n)+0
(m-n){2a+(m+n-1)d}=0
2a+(m+n-1)d=0
(m+n)th term=0
Answered by
0
Answer:
Let the first term of AP = a
common difference = d
We have to show that (m+n)th term is zero or a + (m+n-1)d = 0
mth term = a + (m-1)d
nth term = a + (n-1) d
Given that m{a +(m-1)d} = n{a + (n -1)d}
⇒ am + m²d -md = an + n²d - nd
⇒ am - an + m²d - n²d -md + nd = 0
⇒ a(m-n) + (m²-n²)d - (m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0
⇒ a(m-n) + (m-n)(m+n -1) d = 0
⇒ (m-n){a + (m+n-1)d} = 0
⇒ a + (m+n -1)d = 0/(m-n)
⇒ a + (m+n -1)d = 0
Proved!
Similar questions
Math,
8 months ago
English,
8 months ago
English,
8 months ago
English,
1 year ago
Hindi,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago