If m times the mth term of an AP is equal to n times the nth term of same AP , prove that (m+n)th term of the AP is 0.
Answers
Answered by
0
m(mth term)=n(nth term)
m(a+(m-1)d)=n(a+(n-1)d)
am+md(m-1)=na+nd(n-1)
a(m-n)=d(n²-n-m²+m)
a(m-n)=d(m-n-(m²-n²))
a(m-n)=d(m-n)(1-m-n)
a=d(1-m-n)
(m+n)th term=a+(m+n-1)d=d(1-m-n)+(m+n-1)d
=d(1-m-n+m+n-1)
=d*0=0
m(a+(m-1)d)=n(a+(n-1)d)
am+md(m-1)=na+nd(n-1)
a(m-n)=d(n²-n-m²+m)
a(m-n)=d(m-n-(m²-n²))
a(m-n)=d(m-n)(1-m-n)
a=d(1-m-n)
(m+n)th term=a+(m+n-1)d=d(1-m-n)+(m+n-1)d
=d(1-m-n+m+n-1)
=d*0=0
Answered by
1
Answer:
Let the first term of AP = a
common difference = d
We have to show that (m+n)th term is zero or a + (m+n-1)d = 0
mth term = a + (m-1)d
nth term = a + (n-1) d
Given that m{a +(m-1)d} = n{a + (n -1)d}
⇒ am + m²d -md = an + n²d - nd
⇒ am - an + m²d - n²d -md + nd = 0
⇒ a(m-n) + (m²-n²)d - (m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0
⇒ a(m-n) + (m-n)(m+n -1) d = 0
⇒ (m-n){a + (m+n-1)d} = 0
⇒ a + (m+n -1)d = 0/(m-n)
⇒ a + (m+n -1)d = 0
Proved!
Similar questions