Math, asked by Ishika747, 15 hours ago

if m times the mth term of an AP is equal to n times the nth term then show that (m+n)th term of an AP is 0​

Answers

Answered by talpadadilip417
5

Let a be the first term and d be the common difference, then

\rm \: m a_{m}=n a_{n}

 \[ \begin{array}{l}  \rm  \Rightarrow \quad m[a+(m-1) d]=n[a+(n-1) d] \\\\  \rm  \Rightarrow \quad\left[\left(m^{2}-n^{2}\right)-(m-n)\right] d=-(m-n) a \\\\  \rm  \Rightarrow \quad(m+n-1) d=-a \\ \\  \rm \Rightarrow \quad a+(m+n-1) d=0 \\ \\  \rm \Rightarrow \quad a_{m+n}=0 . \end{array} \]

Similar questions