Math, asked by pandeykartikeypc9hhz, 1 year ago

If m times the mth term of the A.P. is equal to the n times the nth term. Show that the (m+n)th term is zero.

Attachments:

Answers

Answered by GovindRavi
1
Hope this help.........
Attachments:

pandeykartikeypc9hhz: thankyou sir
GovindRavi: pleasure to hlp u...
pandeykartikeypc9hhz: sir can u help me un a question, i had just sent
GovindRavi: let me c
Answered by sanyamshruti
0

Answer:

Let the first term of AP = a

common difference = d

We have to show that (m+n)th term is zero or a + (m+n-1)d = 0

mth term = a + (m-1)d

nth term = a + (n-1) d

Given that m{a +(m-1)d} = n{a + (n -1)d}

⇒ am + m²d -md = an + n²d - nd

⇒ am - an + m²d - n²d -md + nd = 0

⇒ a(m-n) + (m²-n²)d - (m-n)d = 0

⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0

⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0

⇒ a(m-n)  + (m-n)(m+n -1) d  = 0

⇒ (m-n){a + (m+n-1)d} = 0 

⇒ a + (m+n -1)d = 0/(m-n)

⇒ a + (m+n -1)d = 0

Proved!

Similar questions