If m times thr mth term of an A.P is equal to ntimes its nth term,find the (m+n)th term of the A.P
Answers
Answered by
3
m(a + (m-1)d) = n(a + (n-1)d)
ma + d(m²-m) = na + d(n²-n)
a(m-n) + d(m²-n² + n-m) = 0
a(m-n) + d[(m+n)(m-n) - (m-n)] = 0
Taking (m-n) common and canceling it with zero,
a + [(m+n) - 1]d = 0
Answered by
1
Answer:
Step-by-step explanation:Answer:
Let the first term of AP = a
common difference = d
We have to show that (m+n)th term is zero or a + (m+n-1)d = 0
mth term = a + (m-1)d
nth term = a + (n-1) d
Given that m{a +(m-1)d} = n{a + (n -1)d}
⇒ am + m²d -md = an + n²d - nd
⇒ am - an + m²d - n²d -md + nd = 0
⇒ a(m-n) + (m²-n²)d - (m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0
⇒ a(m-n) + (m-n)(m+n -1) d = 0
⇒ (m-n){a + (m+n-1)d} = 0
⇒ a + (m+n -1)d = 0/(m-n)
⇒ a + (m+n -1)d = 0
Proved!
Similar questions