If m(x) = 3n2 - 4n + 1, where where n= (x - 2), find m(-1).
Answers
Answer:
40
Step-by-step explanation:
plZz bRainlisT mE...nd folloW
Answer :
m=36
Explanation :
mx=3n2 - 4n+1
let n= x-2
mx= 3n2 - 4n+1
mx= 3(x-2)2 - 4(x-2) + 1
let x= -1
m(-1)=3((-1) -2)2 - 4((-1) - 2) + 1
{multiplying a positive and a negative equals a negative (+) *(-)=(-)}
-m*1=3((-1)-2)2 - 4((-1)-2) + 1
...-m*1=3((-1)-2)2 - 4((-1)-2) + 1
{any expression multiplied by 1 remains the same }
-m=3((-1)-2)2 - 4((-1)-2) + 1
...-m=3((-1)-2)2 - 4((-1)-2) + 1
{calculate the difference }
-m=3*(-3)2 - 4(-4)2 + 1
...-m=3*(-3)2 - 4(-4)2 + 1
{a negative base raised to even power =a positive }
-m=3*(3)2 - 4*(4)2 + 1
...-m=3*(3)2 - 4*(4)2 + 1
{calculate the product }
-m=(3)3 - (4)3 + 1
...-m=(3)3 - (4)3 + 1
{evaluate the power}
-m=27 - 64 + 1
...-m=27 - 64 + 1
{calculate the sum or difference }
-m=-36
...-m=-36
{change the signs on both sides of the equation }
m=36
Mark me on brainliest plz and follow me