Math, asked by Laxmipriyamohanty, 11 months ago

If m(x) = 3n2 - 4n + 1, where where n= (x - 2), find m(-1).​

Answers

Answered by Anonymous
0

Answer:

40

Step-by-step explanation:

plZz bRainlisT mE...nd folloW

Attachments:
Answered by annie1999rukku
0

Answer :

m=36

Explanation :

mx=3n2 - 4n+1

let n= x-2

mx= 3n2 - 4n+1

mx= 3(x-2)2 - 4(x-2) + 1

let x= -1

m(-1)=3((-1) -2)2 - 4((-1) - 2) + 1

{multiplying a positive and a negative equals a negative (+) *(-)=(-)}

-m*1=3((-1)-2)2 - 4((-1)-2) + 1

...-m*1=3((-1)-2)2 - 4((-1)-2) + 1

{any expression multiplied by 1 remains the same }

-m=3((-1)-2)2 - 4((-1)-2) + 1

...-m=3((-1)-2)2 - 4((-1)-2) + 1

{calculate the difference }

-m=3*(-3)2 - 4(-4)2 + 1

...-m=3*(-3)2 - 4(-4)2 + 1

{a negative base raised to even power =a positive }

-m=3*(3)2 - 4*(4)2 + 1

...-m=3*(3)2 - 4*(4)2 + 1

{calculate the product }

-m=(3)3 - (4)3 + 1

...-m=(3)3 - (4)3 + 1

{evaluate the power}

-m=27 - 64 + 1

...-m=27 - 64 + 1

{calculate the sum or difference }

-m=-36

...-m=-36

{change the signs on both sides of the equation }

m=36

Mark me on brainliest plz and follow me

Similar questions