Math, asked by surekhagandhisg, 4 months ago

if m²+1/m²=34, find the value of m³+1/m³, using the positive value of m+1/m

Answers

Answered by PharohX
2

Step-by-step explanation:

GIVEN :-

 \sf \:  {m}^{2}   +  \frac{1}{ {m}^{2} }  = 34 \\

TO FIND :-

 \sf \:  {m}^{3}  +  \frac{1}{ {m}^{3} }  \\

SOLUTION :-

 \sf \:  \bigg(m +  \frac{1}{m}  \bigg) {}^{2}  =  {m}^{2}  +  \frac{1}{ {  m}^{2} }  + 2(  \cancel{m})( \frac{1}{ \cancel{m}} ) \\  \\  \implies \sf \:  \bigg(m +  \frac{1}{m}  \bigg) {}^{2} = 34 + 2 \\  \\   \implies\sf \:  \bigg(m +  \frac{1}{m}  \bigg) {}^{2} = 36 \\  \\   \implies\sf \:  \bigg(m +  \frac{1}{m}  \bigg)  =   \pm\sqrt{36}  \\  \\   \implies\sf \:  \bigg(m +  \frac{1}{m}  \bigg)  =  \pm6  \\ \\  \sf \:  \: it \: is \: given \: that \:  \:  \sf \:  \bigg(m +  \frac{1}{m}  \bigg)  </p><p></p><p>\:  \: is \:  \: positive \:  \\  \\  \sf \implies \:  \sf \:  \bigg(m +  \frac{1}{m}  \bigg)  = 6

 \sf \: Now  \: cubing \:  both \:  sides  \\  \\  \implies \sf \:  \bigg(m +  \frac{1}{m}  \bigg)  {}^{3}  =  {6}^{3}  \\  \\  \implies \:   \sf \: {m}^{3}  +  \frac{1}{ {m}^{3} }  + 3(m)( \frac{1}{m} ) \bigg(m +  \frac{1}{m}  \bigg) = 216 \\  \\  \implies \:   \sf \: {m}^{3}  +  \frac{1}{ {m}^{3} } + 3 \times (6) = 216 \\  \\  \sf \implies \:  \:   \sf \: {m}^{3}  +  \frac{1}{ {m}^{3} } + 18 = 216 \\  \\  \implies \:   \sf \: {m}^{3}  +  \frac{1}{ {m}^{3} } = 216 - 18 \\  \\  \implies \:   \sf \: {m}^{3}  +  \frac{1}{ {m}^{3} } = 198

 \sf \: Hence \:  \green{ \boxed{ {m}^{3}   + \frac{1}{ {m}^{3} }  = 198}}

Similar questions