Math, asked by taanuranga752, 1 year ago

If (m2 - 4m - 1) = 0, then determine the value of (m + m-1). (given: m < 1)

Answers

Answered by gayathripoornananda
2

2m-4m-1=0 then m= 1/2

Answered by slicergiza
9

Answer:

-5 - √5

Step-by-step explanation:

Given equation,

m^2-4m-1=0

By the quadratic formula,

m=\frac{-(-4)\pm \sqrt{(-4)^2-4\times 1\times -1}}{2}

m=\frac{-4\pm \sqrt{16+4}}{2}

m=\frac{-4\pm \sqrt{20}}{2}

m=\frac{-4\pm 2\sqrt{5}}{2}

m=-2\pm \sqrt{5}

∵ √5 > -2 ⇒ -2 + √5 = Positive and -2 - √5 = negative,

Here, m < 1

\implies m = -2-\sqrt{5}

\implies m + m-1 = -2 - \sqrt{5} - 2 -\sqrt{5} - 1 = -5 - \sqrt{5}

Similar questions