if (ma+nb):b::(mc+nd):d, prove that a,b,c,d are in proportion
Answers
Answered by
78
(ma+nb)/b = (mc+nd)/d
d(ma+nb)=b(mc+nd)
dma+dnb=bmc+bnd
dma-bmc=bnd-dnb
m(da-bc)=n(bd-db)
m(da-bc)=n(0)
m(da-bc)=0
da-bc=0
da=bc
a/b = c/d
Thus, a,b,c and d are in proportion.
d(ma+nb)=b(mc+nd)
dma+dnb=bmc+bnd
dma-bmc=bnd-dnb
m(da-bc)=n(bd-db)
m(da-bc)=n(0)
m(da-bc)=0
da-bc=0
da=bc
a/b = c/d
Thus, a,b,c and d are in proportion.
khalder:
awesome
Answered by
18
Hence,a,b,c,d are in proportion.
Step-by-step explanation:
Given,
(ma+nb):b:(mc+nd):d
We have to prove that,
a,b,c,d are in proportion
Now,
⇒
⇒ dma+dnb=bmc+bnd
⇒ dma-bmc=bnd-dnb
⇒ m(da-bc)=n(bd-db)
⇒ m(da-bc)=n(0)
⇒ m(da-bc)=0
⇒ da-bc=0
⇒ da=bc
So,
Hence,a,b,c,d are in proportion.
Similar questions