Physics, asked by dhanvi08, 9 months ago

if mass of the object is 2 kg and it is released from height of 150 m then calculate time required ? (g=10m/s2)​

Answers

Answered by MukulCIL
0

Explanation:

Since acceleration is constant, we can use the equation of motion

S = Ut + 1/2 gt^2

150 = 0*t + .5*10*t^2

150/(.5*10)= t^2

t =

 \sqrt{30 } seconds

Answered by Anonymous
1

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

Given :

  • Mass of Object (m) = 2 kg
  • Height (s) = 150 m
  • Acceleration = g = 10 m/s²
  • Initial velocity (u) = 0 m/s²

__________________

To Find :

  • Time required

__________________

Solution :

Use formula :

\large \bigstar \: \: {\boxed{\sf{S \: = \: ut \: + \: \dfrac{1}{2}at^2}}} \\ \\ \implies {\sf{150 \: = \: 0 \: \times \: t \: + \: \dfrac{1}{2} \: \times \: 10 \: \times \: t^2}} \\ \\ \implies {\sf{150 \: = \: 0 \: + \: 5t^2}} \\ \\ \implies {\sf{t^2 \: = \: \dfrac{150}{5}}} \\ \\ \implies {\sf{t^2 \: = \: 30}} \\ \\ \implies {\sf{t \: = \: \sqrt{30}}} \\ \\ \implies {\sf{t \: = \: 5.47}} \\ \\ {\underline{\sf{\therefore \: Time \: required \: is \: 5.47 \: s}}}

Similar questions