Math, asked by skkamagoudaskk, 2 months ago

if matrix A [1 0 0 1] of order 2×2 and B is [0 1 -1 0] of order 2×2 show that (aA+bB) (aA-bB)=(a^2+b^2)A​

Answers

Answered by LivetoLearn143
1

\large\underline{\sf{Solution-}}

Given matrices are

\rm :\longmapsto\:A = \bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg]

and

\rm :\longmapsto\:B = \bigg[ \begin{matrix}0&1 \\  - 1&0 \end{matrix} \bigg]

So,

\rm :\longmapsto\:aA + bB

\rm \:  =  \:  \: \bigg[ \begin{matrix}a&0 \\ 0&a \end{matrix} \bigg] + \bigg[ \begin{matrix}0&b \\  - b&0 \end{matrix} \bigg]

\rm \:  =  \:  \: \bigg[ \begin{matrix}a&b \\  - b&a \end{matrix} \bigg]

Now,

\rm :\longmapsto\:aA  -  bB

\rm \:  =  \:  \: \bigg[ \begin{matrix}a&0 \\ 0&a \end{matrix} \bigg]  -  \bigg[ \begin{matrix}0&b \\  - b&0 \end{matrix} \bigg]

\rm \:  =  \:  \: \bigg[ \begin{matrix}a& - b \\  b&  a \end{matrix} \bigg]

Now, Consider

\rm :\longmapsto\:(aA + bB)(aA - bB)

\rm \:  =  \:  \: \bigg[ \begin{matrix}a&b \\  - b&a \end{matrix} \bigg]\bigg[ \begin{matrix}a& - b \\  b& a \end{matrix} \bigg]

\rm \:  =  \:  \: \bigg[ \begin{matrix} {a}^{2} +  {b}^{2}  &0 \\ 0& {a}^{2} +  {b}^{2}   \end{matrix} \bigg]

\rm \:  =  \:  \: ( {a}^{2} +  {b}^{2})\bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg]

\rm \:  =  \:  \: ( {a}^{2} +  {b}^{2})A

Hence,

\bf :\longmapsto\:(aA + bB)(aA - bB) = ( {a}^{2} +  {b}^{2})A

Similar questions