Math, asked by hibbu6992, 5 hours ago

If matrix A = 3 4 1 -1 then show that Apower n = 1+2n -4n n 1-2n

Answers

Answered by yassersayeed
4

Given :

A=\left[\begin{array}{ll}3 & -4 \\1 & -1\end{array}\right]

We have o show that A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\n & 1-2 n\end{array}\right]

To solve this matrix we have to use the concept of mathematical induction .

P(n) \text { : If } A=\left[\begin{array}{cc}3 & -4 \\1 & -1\end{array}\right] \text {, then } A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\n & 1-2 n\end{array}\right], n \in N

Let n = 1.

\text { L.H.S }=A^{1}=A=\left[\begin{array}{ll}3 & -4 \\1 & -1\end{array}\right]

\text { R.H.S }=\left[\begin{array}{cc}1+2(1) & -4(1) \\1 & 1-2(1)\end{array}\right]

            = \left[\begin{array}{cc}1+2 & -4 \\1 & 1-2\end{array}\right]

            = \left[\begin{array}{ll}3 & -4 \\1 & -1\end{array}\right]

\text { L.H.S = R.H.S }

\therefore \mathrm{P}(\mathrm{n}) \text { is true for } \mathrm{n}=1

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\begin{gathered}A=\left[\begin{array}{ll}3 & -4 \\1 & -1\end{array}\right]\end{gathered}

In order to show that,

 \\ \rm :\longmapsto\:\begin{gathered}A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\n & 1-2 n\end{array}\right]\end{gathered}

We use the concept of Principal of Mathematical Induction

Step :- 1 For n = 1, we get

 \\ \rm :\longmapsto\:\begin{gathered}A^{1}=\left[\begin{array}{cc}1+2  & -4  \\1 & 1-2 \end{array}\right]\end{gathered}

\sf\implies \: \begin{gathered}A=\left[\begin{array}{ll}3 & -4 \\1 & -1\end{array}\right]\end{gathered}

\bf\implies \: {A}^{n} \: is \: true \: for \: n = 1

Step :- 2 For n = k, Assume that it is true

\rm :\longmapsto\:\begin{gathered}A^{k}=\left[\begin{array}{cc}1+2k & -4k \\k & 1-2k\end{array}\right]\end{gathered}

Step :- 3 We have to show that it is true for n = k + 1

\rm :\longmapsto\:\begin{gathered}A^{k + 1}=\left[\begin{array}{cc}3+2k & -4k - 4 \\k + 1 &  - 1-2k\end{array}\right]\end{gathered}

Consider,

\rm :\longmapsto\: {A}^{k + 1}

 \rm \:  =  \:  {A}^{k} \times A

 \rm \:  =  \: \begin{gathered}\left[\begin{array}{cc}1+2k & -4k \\k & 1-2k\end{array}\right]\end{gathered} \times \begin{gathered}\left[\begin{array}{ll}3 & -4 \\1 & -1\end{array}\right]\end{gathered}

 \rm \:  =  \: \begin{gathered}\left[\begin{array}{cc}3+6k - 4k & -4 - 8k + 4k \\3k + 1 - 2k &  - 4k - 1 + 2k\end{array}\right]\end{gathered}

 \rm \:  =  \: \:\begin{gathered}\left[\begin{array}{cc}3+2k & -4k - 4 \\k + 1 &  - 1-2k\end{array}\right]\end{gathered}

\bf\implies \: {A}^{n} \: is \: true \: for \: n = k + 1

Hence,

By the Process of Principal of Mathematical Induction

 \\ \rm :\longmapsto\:\begin{gathered}A^{n}=\left[\begin{array}{cc}1+2 n & -4 n \\n & 1-2 n\end{array}\right]\end{gathered}

Similar questions