Math, asked by iamhanaan, 1 month ago

If maximum and minimum values of x²-5x+6 in [0,4] are 'a' and 'b', then a²+b²= ?

Please Help​

Answers

Answered by mathdude500
4

Basic Concept used

Finding maxima and minina of f(x) on [a,b]

  • Verify that the function is continuous on the interval [a,b] .

  • Find all critical points of f(x) that are in the interval [a,b].

  • Evaluate the function at the critical points found in step 1 and the end points.

  • Identify the maxima and minima.

Let's solve the problem now!!.

\rm :\longmapsto\:Let \: f(x) =  {x}^{2}  - 5x + 6

Differentiate w. r. t. x, both sides we get

\rm :\longmapsto\:f'(x) = 2x - 5

For maxima or minima,

\rm :\longmapsto\:f'(x) = 0

\rm :\longmapsto\:2x - 5 = 0

\rm :\implies\:x = \dfrac{5}{2}

\rm :\implies\: x  =  0,  \: \dfrac{5}{2} ,4

So,

\rm :\longmapsto\:f(0) =  {0}^{2}  - 5 \times 0 + 6 = 6

\rm :\longmapsto\:f\bigg(\dfrac{5}{2}  \bigg)  =  {\bigg(\dfrac{5}{2}  \bigg) }^{2} - 5 \times \dfrac{5}{2}   + 6

 \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \dfrac{25}{4}  - \dfrac{25}{2}  + 6

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \dfrac{25 - 50 + 24}{4}

 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  =  -  \: \dfrac{1}{4}

\rm :\longmapsto\:f(4) =  {4}^{2}  - 5 \times 4 + 6

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 16 - 20 + 6

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2

\rm :\implies\:Maximum \:  value \:  is \:  =  \: 6

and

\rm :\implies\:Minimum \: value \:  =  -  \: \dfrac{1}{4}

So,

It means,

\rm :\longmapsto\:a = 6 \:  \: and \:  \: b =  - \dfrac{1}{4}

Hence,

\rm :\longmapsto\: {a}^{2}  +  {b}^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  {(6)}^{2}  +  {\bigg( \dfrac{ - 1}{4} \bigg) }^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 36 + \dfrac{1}{16}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \dfrac{576 + 1}{16}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \dfrac{577}{16}

Attachments:
Similar questions